Genetic Heritage (genetic + heritage)

Distribution by Scientific Domains


Selected Abstracts


Deconstructing Jaco: Genetic Heritage of an Afrikaner

ANNALS OF HUMAN GENETICS, Issue 5 2007
J. M. Greeff
Summary It is often assumed that Afrikaners stem from a small number of Dutch immigrants. As a result they should be genetically homogeneous, show founder effects and be rather inbred. By disentangling my own South African pedigree, that is on average 12 generations deep, I try to quantify the genetic heritage of an Afrikaner. As much as 6% of my genes have been contributed by slaves from Africa, Madagascar and India, and a woman from China. This figure compares well to other genetic and genealogical estimates. Seventy three percent of my lineages coalesce into common founders, and I am related in excess of 10 times to 20 founder ancestors (30 times to Willem Schalk van der Merwe). Significant founder effects are thus possible. The overrepresentation of certain founder ancestors is in part explained by the fact that they had more children. This is remarkable given that they lived more than 300 years (or 12 generations) ago. DECONSTRUCT, a new program for pedigree analysis, identified 125 common ancestors in my pedigree. However, these common ancestors are so distant from myself, paths of between 16 and 25 steps in length, that my inbreeding coefficient is not unusually high (f , 0.0019). [source]


Genetic heritage and native identity of the Seaconke Wampanoag tribe of massachusetts

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 4 2010
Sergey I. Zhadanov
Abstract The name "Wampanoag" means "Eastern People" or "People of the First Light" in the local dialect of the Algonquian language. Once extensively populating the coastal lands and neighboring islands of the eastern United States, the Wampanoag people now consist of two federally recognized tribes, the Aquinnah and Mashpee, the state-recognized Seaconke Wampanoag tribe, and a number of bands and clans in present-day southern Massachusetts. Because of repeated epidemics and conflicts with English colonists, including King Philip's War of 1675,76, and subsequent colonial laws forbidding tribal identification, the Wampanoag population was largely decimated, decreasing in size from as many as 12,000 individuals in the 16th century to less than 400, as recorded in 1677. To investigate the influence of the historical past on its biological ancestry and native cultural identity, we analyzed genetic variation in the Seaconke Wampanoag tribe. Our results indicate that the majority of their mtDNA haplotypes belongs to West Eurasian and African lineages, thus reflecting the extent of their contacts and interactions with people of European and African descent. On the paternal side, Y-chromosome analysis identified a range of Native American, West Eurasian, and African haplogroups in the population, and also surprisingly revealed the presence of a paternal lineage that appears at its highest frequencies in New Guinea and Melanesia. Comparison of the genetic data with genealogical and historical information allows us to reconstruct the tribal history of the Seaconke Wampanoag back to at least the early 18th century. Am J Phys Anthropol 142:579,589, 2010. © 2010 Wiley-Liss, Inc. [source]


Gene therapy and enhancement for diabetes (and other diseases): the multiplicity of considerations

DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 7 2010
Marta Bertolaso
Abstract Gene therapy has reached the forefront of studies and research over the last 30 years because of its potential for curing, treating, and preventing diseases associated with DNA mutations. Type 1 and type 2 diabetes are two examples of very common polygenic and multifactorial diseases. The huge amount of scientific literature on this topic reflects a growing general interest in the possibilities of altering our genetic heritage and thus controlling the onset of diseases associated with mutations and relative risk factors. We have focussed on the new treatment opportunities and possibility of enhancing an individual's health, physical well-being, and even an individual's behaviour through technologies specially designed for therapeutic purposes, which have been presented in literature. This historical perspective shows how this type of research, however, was immediately subjected to an ethical evaluation, especially regarding the decoding of the human genome and the questions raised by the alteration of our genetic heritage through new biotechnologies. Moreover, understanding the limitations of gene therapy protocol experiments and the multifactorial nature of many diseases, which have a genetic base, also contributes to these considerations. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Morphometric and immunohistochemical study of the abomasum of red deer during prenatal development

JOURNAL OF ANATOMY, Issue 3 2007
A. J. Masot
Abstract The red deer is well suited to scientific study, given its economic importance as an animal to be hunted, and because it has a rich genetic heritage. However, there has been little research into the prenatal development of the stomach of ruminants in general, and none for the red deer. For this reason, we undertook histological evaluation of the ontogenesis of the abomasum in red deer. Histomorphometric and immunohistochemical analyses were carried out on 50 embryos and fetuses from the initial stages of prenatal life until birth. The animals were divided for test purposes into five experimental groups: group I [1.4,3.6 cm crown,rump length (CRL); 30,60 days, 1,25% of gestation]; group II (4.5,7.2 cm CRL; 67,90 days, 25,35% of gestation); group III (8,19 cm CRL; 97,135 days, 35,50% of gestation); group IV (21,33 cm CRL; 142,191 days, 50,70% of gestation) group V (36,40 cm CRL; 205,235 days, 75,100% of gestation). In the organogenesis of the primitive gastric tube of red deer, differentiation of the abomasum took place at 67 days, forming a three-layered structure: the epithelial layer (pseudostratified), pluripotential blastemic tissue and serosa. The abomasal wall displayed the primitive folds of the abomasum and by 97 days abomasal peak areas were observed on the fold surface. At 135 days the abomasal surface showed a single mucous cylindrical epithelium, and gastric pits were observed in the spaces between abomasal areas. At the bottom of these pits the first outlines of glands could be observed. The histodifferentiation of the lamina propria-submucosa, tunica muscularis and serosa showed patterns similar to those described for the forestomach of red deer. The abomasum of red deer during prenatal life, especially from 67 days of gestation, was shown to be an active structure with full secretory capacity. Its histological development, its secretory capacity (as revealed by the presence of neutral mucopolysaccharides) and its neuroendocrine nature (as revealed by the presence of positive non-neuronal enolase cells and the neuropeptides vasoactive intestinal peptide and neuropeptide Y) were in line with the development of the rumen, reticulum and omasum. Gastrin-immunoreactive cells first appeared in the abomasum at 142 days, and the number of positive cells increased during development. As for the number of gastrin cells, plasma gastrin concentrations increased throughout prenatal life. However, its prenatal development was later than that of the abomasum in sheep, goat and cow. [source]


Inferring Continental Ancestry of Argentineans from Autosomal, Y-Chromosomal and Mitochondrial DNA

ANNALS OF HUMAN GENETICS, Issue 1 2010
Daniel Corach
Summary We investigated the bio-geographic ancestry of Argentineans, and quantified their genetic admixture, analyzing 246 unrelated male individuals from eight provinces of three Argentinean regions using ancestry-sensitive DNA markers (ASDM) from autosomal, Y and mitochondrial chromosomes. Our results demonstrate that European, Native American and African ancestry components were detectable in the contemporary Argentineans, the amounts depending on the genetic system applied, exhibiting large inter-individual heterogeneity. Argentineans carried a large fraction of European genetic heritage in their Y-chromosomal (94.1%) and autosomal (78.5%) DNA, but their mitochondrial gene pool is mostly of Native American ancestry (53.7%); instead, African heritage was small in all three genetic systems (<4%). Population substructure in Argentina considering the eight sampled provinces was very small based on autosomal (0.92% of total variation was between provincial groups, p = 0.005) and mtDNA (1.77%, p = 0.005) data (none with NRY data), and all three genetic systems revealed no substructure when clustering the provinces into the three geographic regions to which they belong. The complex genetic ancestry picture detected in Argentineans underscores the need to apply ASDM from all three genetic systems to infer geographic origins and genetic admixture. This applies to all worldwide areas where people with different continental ancestry live geographically close together. [source]


Deconstructing Jaco: Genetic Heritage of an Afrikaner

ANNALS OF HUMAN GENETICS, Issue 5 2007
J. M. Greeff
Summary It is often assumed that Afrikaners stem from a small number of Dutch immigrants. As a result they should be genetically homogeneous, show founder effects and be rather inbred. By disentangling my own South African pedigree, that is on average 12 generations deep, I try to quantify the genetic heritage of an Afrikaner. As much as 6% of my genes have been contributed by slaves from Africa, Madagascar and India, and a woman from China. This figure compares well to other genetic and genealogical estimates. Seventy three percent of my lineages coalesce into common founders, and I am related in excess of 10 times to 20 founder ancestors (30 times to Willem Schalk van der Merwe). Significant founder effects are thus possible. The overrepresentation of certain founder ancestors is in part explained by the fact that they had more children. This is remarkable given that they lived more than 300 years (or 12 generations) ago. DECONSTRUCT, a new program for pedigree analysis, identified 125 common ancestors in my pedigree. However, these common ancestors are so distant from myself, paths of between 16 and 25 steps in length, that my inbreeding coefficient is not unusually high (f , 0.0019). [source]


The implications of adoption for donor offspring following donor-assisted conception

CHILD & FAMILY SOCIAL WORK, Issue 4 2001
Eric Blyth
ABSTRACT In this paper the authors, all experienced social workers with research and practice interests in assisted conception, review practices concerning access to genetic origins information in adoption, and consider to what extent these may be relevant for practice in donor-assisted conception. The paper concludes with policy and practice recommendations that take account of the views of donor offspring and their desire for increased information about their genetic heritage. [source]