Genetic Experiments (genetic + experiment)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Genome-wide expression profiling in the Drosophila eye reveals unexpected repression of notch signaling by the JAK/STAT pathway

DEVELOPMENTAL DYNAMICS, Issue 9 2009
Maria Sol Flaherty
Abstract Although the JAK/STAT pathway regulates numerous processes in vertebrates and invertebrates through modulating transcription, its functionally relevant transcriptional targets remain largely unknown. With one jak and one stat (stat92E), Drosophila provides a powerful system for finding new JAK/STAT target genes. Genome-wide expression profiling on eye discs in which Stat92E is hyperactivated, revealed 584 differentially regulated genes, including known targets domeless, socs36E, and wingless. Other differentially regulated genes (chinmo, lama, Mo25, Imp-L2, Serrate, Delta) were validated and may represent new Stat92E targets. Genetic experiments revealed that Stat92E cell-autonomously represses Serrate, which encodes a Notch ligand. Loss of Stat92E led to de-repression of Serrate in the dorsal eye, resulting in ectopic Notch signaling and aberrant eye growth there. Thus, our micro-array documents a new Stat92E target gene and a previously unidentified inhibitory action of Stat92E on Notch signaling. These data suggest that this study will be a useful resource for the identification of additional Stat92E targets. Developmental Dynamics 238:2235,2253, 2009. © 2009 Wiley-Liss, Inc. [source]


Bmp2 is required for migration but not for induction of neural crest cells in the mouse

DEVELOPMENTAL DYNAMICS, Issue 9 2007
Ana Catarina Correia
Abstract Bone morphogenetic protein (BMP) signaling is essential for neural crest development in several vertebrates. Genetic experiments in the mouse have shown that Bmp2 is essential for the genesis of migratory neural crest cells. Using several markers and a transgenic reporter approach, we now show that neural crest cells are induced in Bmp2 null mutant embryos, but that these cells fail to migrate out of the neural tube. The absence of migratory neural crest cells in these mutants is not due to their elimination by cell death. The neuroectoderm of Bmp2,/, embryos fail to close and create abnormal folds both along the anterior,posterior and medio,lateral axes, which are associated with an apparent medio,lateral expansion of the neural tube. Finally, our data suggest that the molecular cascade downstream of BMP signaling in early neural crest development may be different in mouse and avian embryos. Developmental Dynamics 236:2493,2501, 2007. © 2007 Wiley-Liss, Inc. [source]


Ydj1 but not Sis1 stabilizes Hsp70 protein under prolonged stress in vitro

BIOPOLYMERS, Issue 3 2008
Lütfi Tutar
Abstract Yeast cytosol has two important co-chaperons; Ydj1 and Sis1. Genetic experiments showed that Ydj1 is not essential for viability; however, cells lacking it grow very poorly at 30°C or unable to grow at extreme temperatures. On the other hand, Sis1 is an essential protein and apparently plays a functional role at assembly or disassembly of protein complexes. Stability experiments revealed that only Ydj1-protected Hsp70 proteins can hydrolyze ATP under prolonged stress. © 2007 Wiley Periodicals, Inc. Biopolymers 89: 171,174, 2008. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]


In Vitro and In Vivo Complementation of the Helicobacter pylori Arginase Mutant Using an Intergenic Chromosomal Site

HELICOBACTER, Issue 5 2006
Melanie L. Langford
Abstract Background:, Gene complementation strategies are important in validating the roles of genes in specific phenotypes. Complementation systems in Helicobacter pylori include shuttle vectors, which transform H. pylori at relatively low frequencies, and chromosomally based approaches. Chromosomal complementation strategies are susceptible to polar effects and disruption of other H. pylori genes, leading to unwanted pleiotropic effects. Materials and methods:, A new complementation strategy was developed for H. pylori by utilizing a suicide plasmid vector that contains fragments of an H. pylori intergenic region (hp0203,hp0204), a chloramphenicol acetyltransferase cassette (cat), and a multiple-cloning site. Genes of interest could be cloned into the intergenic plasmid and the genes integrated into H. pylori by homologous recombination into the intergenic chromosomal region without disrupting any annotated H. pylori gene. The complementation system was validated using the gene encoding arginase (rocF). Results:, A rocF mutant unable to hydrolyze or consume l -arginine regained these functions by complementation with the wild-type rocF gene. Complemented strains also had restored arginase protein as determined by Western blot analysis. The complementation system could be successfully applied to multiple H. pylori strains. The intergenic region varied in length and sequence across 17 H. pylori strains, but the flanking-3, ends of the hp0203 and hp0204 coding regions were highly conserved. Inserting a cat cassette and wild-type rocF into the intergenic region did not alter the ability of strain SS1 to colonize mice. Conclusions:, This complementation strategy should greatly facilitate genetic experiments in H. pylori. [source]


Validation of novel promoter sequences derived from two endogenous ubiquitin genes in transgenic Aedes aegypti

INSECT MOLECULAR BIOLOGY, Issue 4 2010
M. A. E. Anderson
Abstract To date, only a limited number of promoter sequences have been described to drive transgene expression in the disease vector Aedes aegypti. We sought to increase this repertoire by characterizing the ability of upstream sequences derived from the Ae. aegypti UbL40 and polyubiquitin genes to drive the expression of marker proteins. Both genomic fragments were able to drive robust expression of luciferase in cultured mosquito cells. Following Mos1-transformation, the UbL40 promoter drove strong expression of a fluorescent marker in early larvae and in ovaries, while the polyubiquitin promoter drove robust EGFP expression in all stages of development, including constitutive expression throughout the midgut. These promoter fragments provide two new expression profiles for future Ae. aegypti genetic experiments. [source]


New technologies for chemical genetics

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue S37 2001
Leslie A. Walling
Abstract Chemical genetics, in which small molecules are used in lieu of mutations to study biological processes, requires large and diverse chemical libraries to specifically perturb different biological pathways. Here we describe a suite of technologies that enable chemical libraries prepared by split-pool solid phase synthesis to be screened in a diverse range of chemical genetic assays. Compounds are synthesized on 500 micron high-capacity polystyrene beads, and arrayed into individual wells of 384-well plates using a hand-held bead arrayer. Compounds are cleaved from synthesis beads using a chemically-resistant ceramic dispensing system, producing individual stock solutions of single compounds. Nanoliter volumes of these solutions are then transferred into assay plates using an array of stainless steel pins mounted on a robotic arm. We have designed reusable 1536- and 6144-well assay plates made of silicone rubber that can be cast in the laboratory and filled by hand. This integrated technology platform enables hundreds of biological assays to be performed from the product of a single synthesis bead, enabling the results of different chemical genetic experiments to be directly compared. J. Cell. Biochem. Suppl. 37: 7,12, 2001. © 2002 Wiley-Liss, Inc. [source]


Physiological functions of imprinted genes

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2002
Benjamin Tycko
Genomic imprinting in gametogenesis marks a subset of mammalian genes for parent-of-origin-dependent monoallelic expression in the offspring. Embryological and classical genetic experiments in mice that uncovered the existence of genomic imprinting nearly two decades ago produced abnormalities of growth or behavior, without severe developmental malformations. Since then, the identification and manipulation of individual imprinted genes has continued to suggest that the diverse products of these genes are largely devoted to controlling pre- and post-natal growth, as well as brain function and behavior. Here, we review this evidence, and link our discussion to a website (http://www.otago.ac.nz/IGC) containing a comprehensive database of imprinted genes. Ultimately, these data will answer the long-debated question of whether there is a coherent biological rationale for imprinting. © 2002 Wiley-Liss, Inc. [source]


Use of Genetic Analyses to Refine Phenotypes Related to Alcohol Tolerance and Dependence

ALCOHOLISM, Issue 2 2001
John C. Crabbe
Various explanations for the dependence on alcohol are attributed to the development of tolerance to some of alcohol's effects, alterations in sensitivity to its rewarding effects, and unknown pathologic consequences of repeated exposure. All these aspects of dependence have been modeled in laboratory rodents, and these studies have consistently shown a significant influence of genetics. Genetic mapping studies have identified the genomic location of the specific genes for some of these contributing phenotypes. In addition, studies have shown that some genes in mice seem to affect both alcohol self-administration and alcohol withdrawal severity: genetic predisposition to high levels of drinking covaries with genetic predisposition to low withdrawal severity, and vice versa. Finally, the role of genetic background on which genes are expressed is important, as are the specifics of the environment in which genetically defined animals are tested. Understanding dependence will require disentangling the multiple interactions of many contributing phenotypes, and genetic analyses are proving very helpful. However, rigorous understanding of both gene-gene and gene-environment interactions will be required to interpret genetic experiments clearly. [source]


Modelling polar auxin transport in developmental patterning

PLANT BIOLOGY, Issue 2010
F. Santos
Abstract Auxin interacts with its own polar transport to influence cell polarity and tissue patterning. Research over the past decade has started to deliver new insights into the molecular mechanisms that drive and regulate polar auxin transport. The most prominent auxin efflux protein, PIN1, has subsequently become a crucial component of auxin transport models because it is now known to direct auxin flow and maintain local auxin gradients. Recent molecular and genetic experiments have allowed the formulation of conceptual models that are able to interpret the role of (i) auxin, (ii) its transport, and (iii) the dynamics of PIN1 in generating temporal and spatial patterns. Here we review the current mathematical models of patterning in two specific developmental contexts: lateral shoot and vein formation, focusing on how these models can help to untangle the details of auxin transport-mediated patterning. [source]


Quantifying the three main components of salinity tolerance in cereals

PLANT CELL & ENVIRONMENT, Issue 3 2009
KARTHIKA RAJENDRAN
ABSTRACT Salinity stress is a major factor inhibiting cereal yield throughout the world. Tolerance to salinity stress can be considered to contain three main components: Na+ exclusion, tolerance to Na+ in the tissues and osmotic tolerance. To date, most experimental work on salinity tolerance in cereals has focused on Na+ exclusion due in part to its ease of measurement. It has become apparent, however, that Na+ exclusion is not the sole mechanism for salinity tolerance in cereals, and research needs to expand to study osmotic tolerance and tissue tolerance. Here, we develop assays for high throughput quantification of Na+ exclusion, Na+ tissue tolerance and osmotic tolerance in 12 Triticum monococcum accessions, mainly using commercially available image capture and analysis equipment. We show that different lines use different combinations of the three tolerance mechanisms to increase their total salinity tolerance, with a positive correlation observed between a plant's total salinity tolerance and the sum of its proficiency in Na+ exclusion, osmotic tolerance and tissue tolerance. The assays developed in this study can be easily adapted for other cereals and used in high throughput, forward genetic experiments to elucidate the molecular basis of these components of salinity tolerance. [source]