Home About us Contact | |||
General Metabolism (general + metabolism)
Selected AbstractsUremic Toxins: Removal with Different TherapiesHEMODIALYSIS INTERNATIONAL, Issue 2 2003Raymond C. Vanholder A convenient way to classify uremic solutes is to subdivide them according to the physicochemical characteristics influencing their dialytic removal into small water-soluble compounds (<500 Da), protein-bound compounds, and middle molecules (>500 Da). The prototype of small water-soluble solutes remains urea although the proof of its toxicity is scanty. Only a few other water-soluble compounds exert toxicity (e.g., the guanidines, the purines), but most of these are characterized by an intra-dialytic behavior, which is different from that of urea. In addition, the protein-bound compounds and the middle molecules behave in a different way from urea, due to their protein binding and their molecular weights, respectively. Because of these specific removal patterns, it is suggested that new approaches of influencing uremic solute concentration should be explored, such as specific adsorptive systems, alternative dialytic timeframes, removal by intestinal adsorption, modification of toxin, or general metabolism by drug administration. Middle molecule removal has been improved by the introduction of large pore, high-flux membranes, but this approach seems to have come close to its maximal removal capacity, whereas multicompartmental behavior might become an additional factor hampering attempts to decrease toxin concentration. Hence, further enhancement of uremic toxin removal should be pursued by the introduction of alternative concepts of elimination. [source] Proteomic analysis of hearts from frataxin knockout mice: Marked rearrangement of energy metabolism, a response to cellular stress and altered expression of proteins involved in cell structure, motility and metabolismPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 8 2008Robert Sutak Abstract A frequent cause of death in Friedreich's ataxia patients is cardiomyopathy, but the molecular alterations underlying this condition are unknown. We performed 2-DE to characterize the changes in protein expression of hearts using the muscle creatine kinase frataxin conditional knockout (KO) mouse. Pronounced changes in protein expression profile were observed in 9,week-old KO mice with severe cardiomyopathy. In contrast, only several proteins showed altered expression in asymptomatic 4,week-old KO mice. In hearts from frataxin KO mice, components of the iron-dependent complex-I and -II of the mitochondrial electron transport chain and enzymes involved in ATP homeostasis (creatine kinase, adenylate kinase) displayed decreased expression. Interestingly, the KO hearts exhibited increased expression of enzymes involved in the citric acid cycle, catabolism of branched-chain amino acids, ketone body utilization and pyruvate decarboxylation. This constitutes evidence of metabolic compensation due to decreased expression of electron transport proteins. There was also pronounced up-regulation of proteins involved in stress protection, such as a variety of chaperones, as well as altered expression of proteins involved in cellular structure, motility and general metabolism. This is the first report of the molecular changes at the protein level which could be involved in the cardiomyopathy of the frataxin KO mouse. [source] Functional proteomic view of metabolic regulation in "Aromatoleum aromaticum" strain EbN1PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 13 2007Lars Wöhlbrand Abstract The denitrifying "Aromatoleum aromaticum" strain EbN1 utilizes a wide range of aromatic and nonaromatic compounds under anoxic and oxic conditions. The recently determined genome revealed corresponding degradation pathways and predicted a fine-tuned regulatory network. In this study, differential proteomics (2-D DIGE and MS) was used to define degradation pathway-specific subproteomes and to determine their growth condition dependent regulation. Differential protein profiles were determined for cultures adapted to growth under 22 different substrate and redox conditions. In total, 354 different proteins were identified, 199 of which displayed significantly changed abundances. These regulated proteins mainly represented enzymes of the different degradation pathways, and revealed different degrees of growth condition specific regulation. In case of three substrate conditions (e.g. phenylalanine, anoxic), proteins previously predicted to be involved in their degradation were apparently not involved (e.g. Pdh, phenylacetaldehyde dehydrogenase). Instead, previously not considered proteins were specifically increased in abundance (e.g. EbA5005, predicted aldehyde:ferredoxin oxidoreductase), shedding new light on the respective pathways. Moreover, strong evidence was obtained for thus far unpredicted degradation pathways of three hitherto unknown substrates (e.g. o -aminobenzoate, anoxic). Comparing all identified regulated and nonregulated proteins provided first insights into regulatory hierarchies of special degradation pathways versus general metabolism in strain EbN1. [source] Host and non-host pathogens elicit different jasmonate/ethylene responses in ArabidopsisTHE PLANT JOURNAL, Issue 5 2004Laurent Zimmerli Summary Arabidopsis does not support the growth and asexual reproduction of the barley pathogen, Blumeria graminis f. sp. hordei Bgh). A majority of germlings fail to penetrate the epidermal cell wall and papillae. To gain additional insight into this interaction, we determined whether the salicylic acid (SA) or jasmonate (JA)/ethylene (ET) defence pathways played a role in blocking barley powdery mildew infections. Only the eds1 mutant and NahG transgenics supported a modest increase in penetration success by the barley powdery mildew. We also compared the global gene expression patterns of Arabidopsis inoculated with the non-host barley powdery mildew to those inoculated with a virulent, host powdery mildew, Erysiphe cichoracearum. Genes repressed by inoculations with non-host and host powdery mildews relative to non-inoculated control plants accounted for two-thirds of the differentially expressed genes. A majority of these genes encoded components of photosynthesis and general metabolism. Consistent with this observation, Arabidopsis growth was inhibited following inoculation with Bgh, suggesting a shift in resource allocation from growth to defence. A number of defence-associated genes were induced during both interactions. These genes likely are components of basal defence responses, which do not effectively block host powdery mildew infections. In addition, genes encoding defensins, anti-microbial peptides whose expression is under the control of the JA/ET signalling pathway, were induced exclusively by non-host pathogens. Ectopic activation of JA/ET signalling protected Arabidopsis against two biotrophic host pathogens. Taken together, these data suggest that biotrophic host pathogens must either suppress or fail to elicit the JA/ET signal transduction pathway. [source] Regulation of retinal ganglion cell gene expression by bHLH transcription factors in the developing and ischemic retinasACTA OPHTHALMOLOGICA, Issue 2009JM MATTER Purpose The loss of retinal ganglion cells (RGC) in the glaucomatous retina exhibits similarities to the pattern of neuronal degeneration detected after experimental ischemia. However, a short episode of retinal ischemia does not provoke damage but rather triggers an endogenous form of neuroprotection. HIFs are bHLH proteins that regulate hypoxic response in ischemic retinas and they are involved in neuroprotection. Hypoxic environments also occur in the developing embryo and create specific niches controlling cell differentiation. Genetic analyses of HIF functions have revealed the importance of oxygen as a key regulator of ontogeny. We have compared the transcriptomes of RGCs in ischemic versus developing retinas. Methods Genome-wide screens were conducted to identify genes which are expressed in newborn RGCs and growing optic nerve axons and which are up- or down-regulated after venal occlusion by photodynamic thrombosis in the rat retinas. Results Atoh7 is a bHLH protein which is central to the transcriptional network regulating the production of RGCs. Among the targets of Atoh7 there are genes involved in the general metabolism and energy supply , e.g., alpha-enolase (ENO1), glucose-6 -phosphate isomerase (GPI). These glycolytic enzymes are also targets of HIFs and they are upregulated during hypoxia. To investigate the linkage of glycolysis and mitochondrial activity in RGCs, we monitored by confocal time-lapse imaging the dynamic distribution of mitochondria in the cell bodies and axons of RGCs that express HIF/Atoh7 targets in developing and ischemic retinas. Conclusion Some gene expression programs involved in differentiating RGCs might be reinitiated in neuroprotection. [source] |