Home About us Contact | |||
Genealogical Relationships (genealogical + relationships)
Selected AbstractsESTIMATING A GEOGRAPHICALLY EXPLICIT MODEL OF POPULATION DIVERGENCEEVOLUTION, Issue 3 2007L. Lacey Knowles Patterns of genetic variation can provide valuable insights for deciphering the relative roles of different evolutionary processes in species differentiation. However, population-genetic models for studying divergence in geographically structured species are generally lacking. Since these are the biogeographic settings where genetic drift is expected to predominate, not only are population-genetic tests of hypotheses in geographically structured species constrained, but generalizations about the evolutionary processes that promote species divergence may also be potentially biased. Here we estimate a population-divergence model in montane grasshoppers from the sky islands of the Rocky Mountains. Because this region was directly impacted by Pleistocene glaciation, both the displacement into glacial refugia and recolonization of montane habitats may contribute to differentiation. Building on the tradition of using information from the genealogical relationships of alleles to infer the geography of divergence, here the additional consideration of the process of gene-lineage sorting is used to obtain a quantitative estimate of population relationships and historical associations (i.e., a population tree) from the gene trees of five anonymous nuclear loci and one mitochondrial locus in the broadly distributed species Melanoplus oregonensis. Three different approaches are used to estimate a model of population divergence; this comparison allows us to evaluate specific methodological assumptions that influence the estimated history of divergence. A model of population divergence was identified that significantly fits the data better compared to the other approaches, based on per-site likelihood scores of the multiple loci, and that provides clues about how divergence proceeded in M. oregonensis during the dynamic Pleistocene. Unlike the approaches that either considered only the most recent coalescence (i.e., information from a single individual per population) or did not consider the pattern of coalescence in the gene genealogies, the population-divergence model that best fits the data was estimated by considering the pattern of gene lineage coalescence across multiple individuals, as well as loci. These results indicate that sampling of multiple individuals per population is critical to obtaining an accurate estimate of the history of divergence so that the signal of common ancestry can be separated from the confounding influence of gene flow,even though estimates suggest that gene flow is not a predominant factor structuring patterns of genetic variation across these sky island populations. They also suggest that the gene genealogies contain information about population relationships, despite the lack of complete sorting of gene lineages. What emerges from the analyses is a model of population divergence that incorporates both contemporary distributions and historical associations, and shows a latitudinal and regional structuring of populations reminiscent of population displacements into multiple glacial refugia. Because the population-divergence model itself is built upon the specific events shaping the history of M. oregonensis, it provides a framework for estimating additional population-genetic parameters relevant to understanding the processes governing differentiation in geographically structured species and avoids the problems of relying on overly simplified and inaccurate divergence models. The utility of these approaches, as well as the caveats and future improvements, for estimating population relationships and historical associations relevant to genetic analyses of geographically structured species are discussed. [source] Deep genealogies and the mid-peninsular seaway of Baja CaliforniaJOURNAL OF BIOGEOGRAPHY, Issue 8 2006Johan Lindell Abstract Geological forces and long-term climate changes can have profound effects on species. Such effects may be manifested in the pattern and magnitude of genealogical diversity, as revealed by mitochondrial DNA (mtDNA) lineages. The relative importance of the different forces on a regional biota must be evaluated along with a good understanding of geological and climatological history. The peninsula of Baja California of north-western Mexico is one area where both geology and climate have affected the historical biogeography of the regional biota. Molecular studies based on the genealogical relationships among mtDNA lineages have contributed greatly towards elucidating the historical biogeography of Baja California. Perhaps most noticeably, numerous concordant breaks in mtDNA genealogies half-way along the peninsula suggest a vicariant history in which the mid-peninsula was temporarily submerged. This vicariant explanation has recently been criticized, as no conclusive geological evidence exists for a continuous submergence of the mid-peninsula. As an alternative, a scenario based on climatological factors has been suggested. Here we discuss the validity of the hypothesized mid-peninsular vicariance event and the climate-based alternative in explaining the concordant genealogical breaks. We argue that, despite the significant changes in climate brought about by the glacial cycles throughout the Quaternary, a vicariant history involving a mid-peninsular seaway remains the most parsimonious explanation of the observed patterns in mtDNA genealogies. [source] High mass accuracy in-source collision-induced dissociation tandem mass spectrometry and multi-step mass spectrometry as complementary tools for fragmentation studies of quaternary ammonium herbicidesJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 8 2004Oscar Núñez Abstract Fragmentation studies using both an ion-trap mass analyzer and a hybrid quadrupole time-of-flight (Q-TOF) mass spectrometer were performed in order to establish the fragmentation pathways of organic molecules. A general strategy combining MSn data (n = 1,4) in an ion-trap analyzer with tandem mass spectrometry and in-source collision-induced dissociation tandem mass spectrometry (CID MS/MS) in a Q-TOF instrument was applied. The MSn data were used to propose a tentative fragmentation pathway following genealogical relationships. When several assignments were possible, MS/MS and in-source CID MS/MS (Q-TOF) allowed the elemental compositions of the fragments to be confirmed. Quaternary ammonium herbicides (quats) were used as test compounds and their fragmentation pathways were established. The elemental composition of the fragments was confirmed using the TOF analyzer with relative errors <0.0023 Da. Some fragments previously reported in the literature were reassigned taking advantage of the high mass resolution and accuracy of the Q-TOF instrument, which made it possible to solve losses where nitrogen was involved. Copyright © 2004 John Wiley & Sons, Ltd. [source] Finding a (pine) needle in a haystack: chloroplast genome sequence divergence in rare and widespread pinesMOLECULAR ECOLOGY, Issue 2010J. B. WHITTALL Abstract Critical to conservation efforts and other investigations at low taxonomic levels, DNA sequence data offer important insights into the distinctiveness, biogeographic partitioning and evolutionary histories of species. The resolving power of DNA sequences is often limited by insufficient variability at the intraspecific level. This is particularly true of studies involving plant organelles, as the conservative mutation rate of chloroplasts and mitochondria makes it difficult to detect polymorphisms necessary to track genealogical relationships among individuals, populations and closely related taxa, through space and time. Massively parallel sequencing (MPS) makes it possible to acquire entire organelle genome sequences to identify cryptic variation that would be difficult to detect otherwise. We are using MPS to evaluate intraspecific chloroplast-level divergence across biogeographic boundaries in narrowly endemic and widespread species of Pinus. We focus on one of the world's rarest pines , Torrey pine (Pinus torreyana) , due to its conservation interest and because it provides a marked contrast to more widespread pine species. Detailed analysis of nearly 90% (,105 000 bp each) of these chloroplast genomes shows that mainland and island populations of Torrey pine differ at five sites in their plastome, with the differences fixed between populations. This is an exceptionally low level of divergence (1 polymorphism/,21 kb), yet it is comparable to intraspecific divergence present in widespread pine species and species complexes. Population-level organelle genome sequencing offers new vistas into the timing and magnitude of divergence within species, and is certain to provide greater insight into pollen dispersal, migration patterns and evolutionary dynamics in plants. [source] Population structure and phylogeography of Solanum pimpinellifolium inferred from a nuclear geneMOLECULAR ECOLOGY, Issue 7 2004Ana Lucía Caicedo Abstract Phylogeographical studies are emerging as a powerful tool for understanding the population structure and evolution of wild relatives of crop species. Because of their value as genetic resources, there is great interest in exploring the distribution of variation in wild relatives of cultivated plants. In this study, we use sequence variation from the nuclear gene, fruit vacuolar invertase (Vac), to investigate the population history of Solanum pimpinellifolium. Solanum pimpinellifolium is a close relative of the cultivated tomato and has repeatedly served as a source of valuable traits for crop improvement. We sequenced the second intron of the Vac gene in 129 individuals, representing 16 populations from the northern half of Peru. Patterns of haplotype sharing among populations indicate that there is isolation by distance. However, there is no congruence between the geographical distribution of haplotypes and their genealogical relationships. Levels of outcrossing decrease towards the southernmost populations, as previously observed in an allozyme study. The geographical pattern of Vac variation supports a centre of origin in northern Peru for S. pimpinellifolium and a gradual colonization along the Pacific coast. This implies that inbreeding populations are derived from outcrossing ones and that variation present at the Vac locus predates the spread of S. pimpinellifolium. The expansion of cities and human agricultural activity in the habitat of S. pimpinellifolium currently pose a threat to the species. [source] Mitochondrial phylogeography of the moor frog, Rana arvalisMOLECULAR ECOLOGY, Issue 6 2004W. Babik Abstract The moor frog Rana arvalis is a lowland species with a broad Eurasiatic distribution, from arctic tundra through forest to the steppe zone. Its present-day range suggests that glacial refugia of this frog were located outside southern European peninsulas. We studied the species-wide phylogeographical pattern using sequence variation in a 682 base pairs fragment of mtDNA cytochrome b gene; 223 individuals from 73 localities were analysed. Two main clades, A and B, differing by c. 3.6% sequence divergence were detected. The A clade is further subdivided into two subclades, AI and AII differing by 1.0%. All three lineages are present in the Carpathian Basin (CB), whereas the rest of the species range, including huge expanses of Eurasian lowlands, are inhabited solely by the AI lineage. We infer that AII and B lineages survived several glacial cycles in the CB but did not expand, at least in the present interglacial, to the north. The geographical distribution and genealogical relationships between haplotypes from the AI lineage indicate that this group had two glacial refugia, one located in the eastern part of the CB and the other probably in southern Russia. Populations from both refugia contributed to the colonization of the western part of the range, whereas the eastern part was colonized from the eastern refugium only. The effective population size as evidenced by ,ML is an order of magnitude higher in the AI lineage than in the AII and B lineages. Demographic expansion was detected in all three lineages. [source] Grooming, rank, and agonistic support in tufted capuchin monkeysAMERICAN JOURNAL OF PRIMATOLOGY, Issue 2 2009Gabriele Schino Abstract Studies investigating the relation between allogrooming and social rank in capuchin monkeys (genus Cebus) have yielded inconsistent results. In this study, we investigated the relation between grooming, agonistic support, aggression and social rank in a captive group of tufted capuchin monkeys (C. apella). Differently from most previous studies, we based our analyses on a relatively large database and studied a group with known genealogical relationships. Tufted capuchin females did not exchange grooming for rank-related benefits such as agonistic support or reduced aggression. Coherently with this picture, they did not groom up the hierarchy and did not compete for accessing high-ranking grooming partners. It is suggested that a small group size, coupled with a strong kin bias, may make the exchange of grooming for rank-related benefits impossible or unprofitable, thus eliminating the advantages of grooming up the hierarchy. We provide several possible explanations for the heterogeneity of results across capuchin studies that have addressed similar questions. Am. J. Primatol. 71:101,105, 2009. © 2008 Wiley-Liss, Inc. [source] Molecular marker-based pedigrees for animal conservation biologistsANIMAL CONSERVATION, Issue 1 2010O. R. Jones Abstract Pedigrees, depicting the genealogical relationships between individuals in a population, are of fundamental importance to several research areas including conservation biology. For example, they are useful for estimating inbreeding, heritability, selection, studying kin selection and for measuring gene flow between populations. Pedigrees constructed from direct observations of reproduction are usually unavailable for wild populations. Therefore, pedigrees for these populations are usually estimated using molecular marker data. Despite their obvious importance, and the fact that pedigrees are conceptually well understood, the methods, and limitations of marker-based pedigree inference are often less well understood. Here we introduce animal conservation biologists to molecular marker-based pedigrees. We briefly describe the history of pedigree inference research, before explaining the underlying theory and basic mechanics of pedigree construction using standard methods. We explain the assumptions and limitations that accompany many of these methods, before going on to explain methods that relax several of these assumptions. Finally, we look to future and discuss some recent exciting advances such as the use of single-nucleotide polymorphisms, inference of multigenerational pedigrees and incorporation of non-genetic data such as field observations into the calculations. We also provide some guidelines on efficient marker selection in order to maximize accuracy and power. Throughout we use examples from the field of animal conservation and refer readers to appropriate software where possible. It is our hope that this review will help animal conservation biologists to understand, choose, and use the methods and tools of this fast-moving field. [source] |