Home About us Contact | |||
Gene Regulation (gene + regulation)
Selected AbstractsAn In Vivo Model to Study Osteogenic Gene Regulation: Targeting an Avian Retroviral Receptor (TVA) to Bone With the Bone Sialoprotein (BSP) Promoter,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2005Ling Li Abstract To study bone development in vivo, a transgenic mouse model was established in which an avian retroviral receptor (TVA) gene driven by the BSP promoter was selectively expressed in skeletal tissues. The model was validated by showing suppressed BSP expression and delayed bone and tooth formation after infection with a virus expressing a mutated Cbfa1/Runx2 gene. Introduction: Tissue-specific expression of the avian retroviral (TVA) receptor can be used to efficiently target ectopic expression of genes in vivo. To determine the use of this approach for studies of osteogenic differentiation and bone formation at specific developmental stages, transgenic mice expressing the TVA receptor under the control of a 5-kb bone sialoprotein (BSP) promoter were generated. The mice were first analyzed for tissue-specific expression of the TVA gene and then, after infection with a viral construct, for the effects of a dominant-negative form of the Cbfa1/Runx2 transcription factor on bone formation. Materials and Methods: We first generated transgenic mice (BSP/TVA) in which the TVA gene was expressed under the control of a 4.9-kb mouse BSP promoter. The tissue-specific expression of the TVA gene was analyzed by RT-PCR, in situ hybridization, and immunohistochemistry and compared with the expression of the endogenous BSP gene. A 396-bp fragment of mutated Cbfa1/Runx2 (Cbfa1mu) encoding the DNA-binding domain was cloned into a RCASBP (A) viral vector, which was used to infect neonatal BSP/TVA mice. Results and Conclusion: Expression of the TVA receptor mRNA and protein in the transgenic mice was consistent with the expression of endogenous BSP. Four days after systemic infection with the Cbfa1mu-RCASBP (A) vector, RT-PCR analyses revealed that the expression of BSP mRNA in tibia and mandibles was virtually abolished, whereas a 30% reduction was seen in calvarial bone. After 9 days, BSP expression in the tibia and mandible was reduced by 45% in comparison with control animals infected with an empty RCASBP vector, whereas BSP expression in the membranous bone of calvariae was decreased ,15%. However, after 4 and 8 weeks, there was almost no change in BSP expression in any of the bone tissues. In comparison, a reduction in osteopontin expression was only observed 9 days after viral transfection in the three bones. Histomorphological examination revealed that bone formation and tooth development were delayed in some of the mice infected with mutated Cbfa1. These studies show that BSP/TVA transgenic mice can be used to target genes to sites of osteogenesis, providing a unique system for studying molecular events associated with bone formation in vivo. [source] How Epigenomics Contributes to the Understanding of Gene Regulation in Toxoplasma gondii,THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 6 2008MATHIEU GISSOT ABSTRACT. How apicomplexan parasites regulate their gene expression is poorly understood. The complex life cycle of these parasites implies tight control of gene expression to orchestrate the appropriate expression pattern at the right moment. Recently, several studies have demonstrated the role of epigenetic mechanisms for control of coordinated expression of genes. In this review, we discuss the contribution of epigenomics to the understanding of gene regulation in Toxoplasma gondii. Studying the distribution of modified histones on the genome links chromatin modifications to gene expression or gene repression. In particular, coincident trimethylated lysine 4 on histone H3 (H3K4me3), acetylated lysine 9 on histone H3 (H3K9ac), and acetylated histone H4 (H4ac) mark promoters of actively transcribed genes. However, the presence of these modified histones at some non-expressed genes and other histone modifications at only a subset of active promoters implies the presence of other layers of regulation of chromatin structure in T. gondii. Epigenomics analysis provides a powerful tool to characterize the activation state of genomic loci of T. gondii and possibly of other Apicomplexa including Plasmodium or Cryptosporidium. Further, integration of epigenetic data with expression data and other genome-wide datasets facilitates refinement of genome annotation based upon experimental data. [source] Primer and interviews: Gene regulation in Arabidopsis thalianaDEVELOPMENTAL DYNAMICS, Issue 9 2009Julie C. Kiefer Abstract The animal and plant kingdoms use many of the same molecular tools to build decidedly different multicellular organisms. Learning how plants approach challenges common to both kingdoms can inspire new ways of thinking in the animal biologist. This primer introduces how a weed from the mustard family, Arabidopsis thaliana, has been used to work through developmental problems. It also compares and contrasts gene regulation tools in animals and plants. Accompanying the primer is a discussion of current topics in root development with Arabidopsis researchers Philip N. Benfey, Ph.D., and Kenneth D. Birnbaum, Ph.D. Developmental Dynamics 238:2449,2458, 2009. © 2009 Wiley-Liss, Inc. [source] Gene regulation of ,4,2 nicotinic receptors: microarray analysis of nicotine-induced receptor up-regulation and anti-inflammatory effectsJOURNAL OF NEUROCHEMISTRY, Issue 3 2009Vishnu Hosur Abstract ,4,2 Nicotinic acetylcholine receptors play an important role in the reward pathways for nicotine. We investigated whether receptor up-regulation of ,4,2 nicotinic acetylcholine receptors involves expression changes for non-receptor genes. In a microarray analysis, 10 ,M nicotine altered expression of 41 genes at 0.25, 1, 8 and 24 h in h,4,2 SH-EP1 cells. The maximum number of gene changes occurred at 8 h, around the initial increase in 3[H]-cytisine binding. Quantitative RT-PCR corroborated gene induction of endoplasmic reticulum proteins CRELD2, PDIA6, and HERPUD1, and suppression of the pro-inflammatory cytokines IL-1, and IL-6. Nicotine suppresses IL-1, and IL-6 expression at least in part by inhibiting NF,B activation. Antagonists dihydro-,-erythroidine and mecamylamine blocked these nicotine-induced changes showing that receptor activation is required. Antagonists alone or in combination with nicotine suppressed CRELD2 message while increasing ,4,2 binding. Additionally, small interfering RNA knockdown of CRELD2 increased basal ,4,2 receptor expression, and antagonists decreased CRELD2 expression even in the absence of ,4,2 receptors. These data suggest that endoplasmic reticulum proteins such as CRELD2 can regulate ,4,2 expression, and may explain antagonist actions in nicotine-induced receptor up-regulation. Further, the unexpected finding that nicotine suppresses inflammatory cytokines suggests that nicotinic ,4,2 receptor activation promotes anti-inflammatory effects similar to ,7 receptor activation. [source] Fibrinolysis, inflammation, and regulation of the plasminogen activating systemJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 2007R. L. MEDCALF Summary., The maintenance of a given physiological process demands a coordinated and spatially regulated pattern of gene regulation. This applies to genes encoding components of enzyme cascades, including those of the plasminogen activating system. This family of proteases is vital to fibrinolysis and dysregulation of the expression pattern of one or more of these proteins in response to inflammatory events can impact on hemostasis. Gene regulation occurs on many levels, and it is apparent that the genes encoding the plasminogen activator (fibrinolytic) proteins are subject to both direct transcriptional control and significant post-transcriptional mechanisms. It is now clear that perturbation of these genes at either of these levels can dramatically alter expression levels and have a direct impact on the host's response to a variety of physiological and pharmacological challenges. Inflammatory processes are well known to impact on the fibrinolytic system and to promote thrombosis, cancer and diabetes. This review discusses how inflammatory and other signals affect the transcriptional and post-transcriptional expression patterns of this system, and how this modulates fibrinolysis in vivo. [source] Maintaining a healthy SPANC balance through regulatory and mutational adaptationMOLECULAR MICROBIOLOGY, Issue 1 2005Thomas Ferenci Summary Stress protection is an important but costly contributor to bacterial survival. Two distinct forms of environmental protection share a common cost and a significant species-wide variability. Porin-mediated outer membrane permeability and the RpoS-controlled general stress response both involve a trade-off between self- preservation and nutritional competence, called the SPANC balance. Interestingly, different Escherichia coli strains exhibit distinct settings of the SPANC balance. It is tilted towards high stress resistance and a restricted diet in some isolates whereas others have broader nutritional capability and better nutrient affinity but lower levels of resistance. Growth- or stress-related selective pressures working in opposite directions (antagonistic pleiotropy) result in polymorphisms affecting porins and RpoS. Consequently, these important cellular components are present at distinct concentrations in different isolates. A generalized hypothesis to explain bacterial adaptation, based on the SPANC investigations, is offered. A holistic approach to bacterial adaptation, involving a gamut of regulation and mutation, is likely to be the norm in broadening the capabilities of a species. Indeed, there is unlikely to be a standard regulatory setting typical for all members of a species. Gene regulation provides a limited fine control for maintaining the right level of adaptation in a particular niche but mutational changes provide the coarse control for adaptation between the species-wide environments of free-living bacteria. [source] Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene productTHE PLANT JOURNAL, Issue 5 2000Wim Reidt Summary The Arabidopsis mutants fus3 and abi3 show pleiotropic effects during embryogenesis including reduced levels of transcripts encoding embryo-specific seed proteins. To investigate the interaction between the B3-domain-containing transcription factors FUS3 and ABI3 with the RY cis -motif, conserved in many seed-specific promoters, a promoter analysis as well as band-shift experiments were performed. The analysis of promoter mutants revealed the structural requirements for the function of the RY cis -element. It is shown that both the nucleotide sequence and the alternation of purin and pyrimidin nucleotides (RY character) are essential for the activity of the motif. Further, it was shown that FUS3 and ABI3 can act independently of each other in controlling promoter activity and that the RY cis -motif is a target for both transcription factors. For FUS3, which is so far the smallest known member of the B3-domain family, a physical interaction with the RY motif was established. The functional and biochemical data demonstrate that the regulators FUS3 and ABI3 are essential components of a regulatory network acting in concert through the RY-promoter element to control gene expression during late embryogenesis and seed development. [source] Imprinting and looping: epigenetic marks control interactions between regulatory elementsBIOESSAYS, Issue 1 2005Yuzuru Kato Gene regulation involves various cis -regulatory elements that can act at a distance. They may physically interact each other or with their target genes to exert their effects. Such interactions are beginning to be uncovered in the imprinted Igf2/H19 domain.1 The differentially methylated regions (DMRs), containing insulators, silencers and activators, were shown to have physical contacts between them. The interactions were changeable depending on their epigenetic state, presumably enabling Igf2 to move between an active and a silent chromatin domain. The study gives us a novel view on how regulatory elements influence gene expression and how epigenetic modifications modulate their long-range effects. BioEssays 27:1,4, 2005. © 2004 Wiley Periodicals, Inc. [source] Myosin Va phosphorylated on Ser1650 is found in nuclear speckles and redistributes to nucleoli upon inhibition of transcriptionCYTOSKELETON, Issue 6 2008Maria Cristina S. Pranchevicius Abstract Nuclear actin and nuclear myosins have been implicated in the regulation of gene expression in vertebrate cells. Myosin V is a class of actin-based motor proteins involved in cytoplasmic vesicle transport and anchorage, spindle-pole alignment and mRNA translocation. In this study, myosin-Va, phosphorylated on a conserved serine in the tail domain (phospho-ser1650 MVa), was localized to subnuclear compartments. A monoclonal antibody, 9E6, raised against a peptide corresponding to phosphoserine1650 and flanking regions of the murine myosin Va sequence, was immunoreactive to myosin Va heavy chain in cellular and nuclear extracts of HeLa cells, PC12 cells and B16-F10 melanocytes. Immunofluorescence microscopy with this antibody revealed discrete irregular spots within the nucleoplasm that colocalized with SC35, a splicing factor that earmarks nuclear speckles. Phospho-ser1650 MVa was not detected in other nuclear compartments, such as condensed chromatin, Cajal bodies, gems and perinucleolar caps. Although nucleoli also were not labeled by 9E6 under normal conditions, inhibition of transcription in HeLa cells by actinomycin D caused the redistribution of phospho-ser1650 MVa to nucleoli, as well as separating a fraction of phospho-ser1650 MVa from SC35 into near-neighboring particles. These observations indicate a novel role for myosin Va in nuclear compartmentalization and offer a new lead towards the understanding of actomyosin-based gene regulation. Cell Motil. Cytoskeleton 2008. © 2008 Wiley-Liss, Inc. [source] Further extension of mammalian GATA-6DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 9 2005Masatomo Maeda Mammalian GATA-6, which has conserved tandem zinc fingers (CVNC-X17 -CNAC)-X29 -(CXNC-X17 -CNAC), is essential for the development and specific gene regulation of the heart, gastrointestinal tract and other tissues. GATA-6 recognizes the (A/T/C)GAT(A/T)(A) sequence, and interacts with other transcriptional regulators through its zinc-finger region. The mRNA of GATA-6 uses two Met codons in frame as translational initiation codons, and produces L- and S-type GATA-6 through leaky ribosome scanning. GATA-6 is subjected to cAMP-dependent proteolysis by a proteasome in a heterologous expression system. These protein-based characteristics of GATA-6 will be helpful for the identification of target genes, together with determination of the in vivo binding sites for GATA-6 and understanding of the complex network of gene regulation mediated by GATA-6. [source] XBtg2 is required for notochord differentiation during early Xenopus developmentDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 7 2005Kaoru Sugimoto The notochord is essential for normal vertebrate development, serving as both a structural support for the embryo and a signaling source for the patterning of adjacent tissues. Previous studies on the notochord have mostly focused on its formation and function in early organogenesis but gene regulation in the differentiation of notochord cells itself remains poorly defined. In the course of screening for genes expressed in developing notochord, we have isolated Xenopus homolog of Btg2 (XBtg2). The mammalian Btg2 genes, Btg2/PC3/TIS21, have been reported to have multiple functions in the regulation of cell proliferation and differentiation but their roles in early development are still unclear. Here we characterized XBtg2 in early Xenopus laevis embryogenesis with focus on notochord development. Translational inhibition of XBtg2 resulted in a shortened and bent axis phenotype and the abnormal structures in the notochord tissue, which did not undergo vacuolation. The XBtg2-depleted notochord cells expressed early notochord markers such as chordin and Xnot at the early tailbud stage, but failed to express differentiation markers of notochord such as Tor70 and 5-D-4 antigens in the later stages. These results suggest that XBtg2 is required for the differentiation of notochord cells such as the process of vacuolar formation after determination of notochord cell fate. [source] Requirement for ,B1-crystallin promoter of Xenopus laevis in embryonic lens development and lens regenerationDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 3 2005Nobuhiko Mizuno Regulation of the lens-specific ,B1-crystallin promoter in Xenopus laevis was investigated using transgenic larvae and tadpoles. Comparison of the promoter sequence with that of chicken ,B1-crystallin gene indicates significant sequence similarity over a span of several hundred base pairs starting from the transcriptional start site. Remarkably, PL-1 and PL-2 sequences identified in the chicken promoter as essential binding sites of MAF, Pax6 and Prox1 transcription factors were conserved. Mutations of X (Xenopus) PL-1 and XPL-2 sequences eliminated the promoter activity, indicating a conserved mechanism regulating ,B1-crystallin promoter among vertebrate species. A stepwise deletion of the promoter sequence starting from 2800 bp indicated that the proximal 260 bp directly upstream of the transcription initiation site is sufficient for eliciting lens-specific expression, but the 150 bp promoter sequence is inactive despite it containing the XPL-1 and XPL-2 sequences, suggesting the presence of an additional and essential regulatory sequence located between ,150 and ,260 bp. Activity of the ,B1-crystallin promoter during lens regeneration from cornea was examined using transgenic tadpoles and found to have the same dependence on promoter regions as in embryonic lens development, indicating that gene regulation is largely shared by the two lens-generating processes. [source] Pleiotropic function of FGF-4: Its role in development and stem cellsDEVELOPMENTAL DYNAMICS, Issue 2 2009Nobuyoshi Kosaka Abstract Fibroblast growth factors (FGFs) were initially recognized as fibroblast-specific growth factor, and it is now apparent that these growth factors regulate multiple biological functions. The diversity of FGFs function is paralleled by the emerging diversity of interactions between FGF ligands and their receptors. FGF-4 is a member of the FGF superfamily and is a mitogen exhibiting strong action on numerous different cell types. It plays a role in various stages of development and morphogenesis, as well as in a variety of biological processes. Recent studies reveal the molecular mechanisms of FGF-4 gene regulation in mammalian cells, which is involved in the developmental process. Furthermore, FGF-4 also acts on the regulation of proliferation and differentiation in embryonic stem cells and tissue stem cells. In this review, we focus on the diverse biological functions of FGF-4 in the developmental process and also discuss its putative roles in stem cell biology. Developmental Dynamics 238:265,276, 2009. © 2008 Wiley-Liss, Inc. [source] C-myc as a modulator of renal stem/progenitor cell populationDEVELOPMENTAL DYNAMICS, Issue 2 2009Martin Couillard Abstract The role of c - myc has been well-studied in gene regulation and oncogenesis but remains elusive in murine development from midgestation. We determined c - myc function during kidney development, organogenesis, and homeostasis by conditional loss of c - myc induced at two distinct phases of nephrogenesis, embryonic day (e) 11.5 and e17.5. Deletion of c - myc in early metanephric mesenchyme (e11.5) led to renal hypoplasia from e15.5 to e17.5 that was sustained until adulthood (range, 20,25%) and, hence, reproduced the human pathologic condition of renal hypoplasia. This phenotype resulted from depletion of c - myc,positive cells in cap mesenchyme, causing a ,35% marked decrease of Six2- and Cited1-stem/progenitor population and of proliferation that likely impaired self-renewal. By contrast, c - myc loss from e17.5 onward had no impact on late renal differentiation/maturation and/or homeostasis, providing evidence that c - myc is dispensable during these phases. This study identified c - myc as a modulator of renal organogenesis through regulation of stem/progenitor cell population. Developmental Dynamics 238:405,414, 2009. © 2009 Wiley-Liss, Inc. [source] MicroRNA expression during chick embryo developmentDEVELOPMENTAL DYNAMICS, Issue 11 2006Diana K. Darnell Abstract MicroRNAs (miRNAs) are small, abundant, noncoding RNAs that modulate protein abundance by interfering with target mRNA translation or stability. miRNAs are detected in organisms from all domains and may regulate 30% of transcripts in vertebrates. Understanding miRNA function requires a detailed determination of expression, yet this has not been reported in an amniote species. High-throughput whole mount in situ hybridization was performed on chicken embryos to map expression of 135 miRNA genes including five miRNAs that had not been previously reported in chicken. Eighty-four miRNAs were detected before day 5 of embryogenesis, and 75 miRNAs showed differential expression. Whereas few miRNAs were expressed during formation of the primary germ layers, the number of miRNAs detected increased rapidly during organogenesis. Patterns highlighted cell-type, organ or structure-specific expression, localization within germ layers and their derivatives, and expression in multiple cell and tissue types and within sub-regions of structures and tissues. A novel group of miRNAs was highly expressed in most tissues but much reduced in one or a few organs, including the heart. This study presents the first comprehensive overview of miRNA expression in an amniote organism and provides an important foundation for investigations of miRNA gene regulation and function. Developmental Dynamics 235:3156,3165, 2006. © 2006 Wiley-Liss, Inc. [source] Differential expression of RAR, isoforms in the mouse striatum during development: A gradient of RAR,2 expression along the rostrocaudal axisDEVELOPMENTAL DYNAMICS, Issue 2 2005Wen-Lin Liao Abstract The retinoic acid receptor RAR, is highly expressed in the striatum of the ventral telencephalon. We studied the expression pattern of different RAR, isoforms in the developing mouse striatum by in situ hybridization. We found a differential ontogeny of RAR,2 and RAR,1/3 in embryonic day (E) 13.5 lateral ganglionic eminence (striatal primordium). RAR,2 mRNA was detected primarily in the rostral and ventromedial domains, whereas RAR,1/3 mRNAs were enriched in the caudal and dorsolateral domains. Notably, by E16.5, a prominent decreasing gradient of RAR,2 mRNA was present in the developing striatum along the rostrocaudal axis, i.e., RAR,2 was expressed at higher levels in the rostral than the caudal striatum. No such gradient was found for RAR,1/3 and RAR,3 mRNAs. The rostrocaudal RAR,2 gradient gradually disappeared postnatally and was absent in the adult striatum. The differential expression pattern of RAR, isoforms in the developing striatum may provide an anatomical basis for differential gene regulation by RAR, signaling. Developmental Dynamics 233:584,594, 2005. © 2005 Wiley-Liss, Inc. [source] Cover Picture: Electrophoresis 16'2010ELECTROPHORESIS, Issue 17 2010Article first published online: 7 SEP 2010 Issue no. 17 is a regular issue comprising 18 manuscripts distributed over 5 separate parts. Part I has 7 research articles on some aspects of proteins and cell separations. Part II has 3 research articles on nucleic acid research including cloning/amplification, gene regulation and STR analysis. Part III offers ways of measuring diffusion and binding constants in two separate articles. Concentration and detection approaches are treated in 4 research articles making up Part IV. The last two articles in this issue (Part V) are on CEC and EKC describing a mixed mode monolithic stationary phase and a cyclodextrin-modified MEEKC. Featured articles include: Lamp-based wavelength-resolved fluorescence detection for protein capillary electrophoresis: Set-up and detector performance ((doi: 10.1002/elps.201000246)) Electromigration diffusivity spectrometry: A way for simultaneous determination of diffusion coefficients from mixed samples ((doi: 10.1002/elps.201000252)) Sample stacking capillary electrophoretic microdevice for highly sensitive mini Y short tandem repeat genotyping ((doi: 10.1002/elps.201000270)) [source] The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activityENVIRONMENTAL MICROBIOLOGY, Issue 8 2006Florian Bredenbruch Summary Virulence factor production and the development of biofilms in Pseudomonas aeruginosa have been shown to be regulated by two hierarchically organized quorum-sensing systems activated by two types of small acyl-homoserine lactone signal molecules. Recently, a third type of bacterial signal molecule, the Pseudomonas quinolone signal (PQS), has been identified, which positively regulates a subset of genes dependent on the quorum-sensing systems. However, the molecular mechanism underlying PQS signalling has remained poorly understood. In this study the global transcriptional profile of P. aeruginosa in response to PQS revealed a marked upregulation of genes belonging to the tightly interdependent functional groups of the iron acquisition and the oxidative stress response. Remarkably, most of the differentially regulated genes, as well as the induction of rhlR, could be traced back to an iron-chelating effect of PQS. Our results amount to the elucidation of how PQS affects P. aeruginosa and have important implications for the understanding of the complex regulatory circuits involved in P. aeruginosa gene regulation. [source] Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putidaENVIRONMENTAL MICROBIOLOGY, Issue 12 2002Alicia Greated Summary The TOL plasmid pWW0 (117 kb) is the best studied catabolic plasmid and the archetype of the IncP-9 plasmid incompatibility group from Pseudomonas. It carries the degradative (xyl) genes for toluenes and xylenes within catabolic transposons Tn4651 and Tn4653. Analysis of the complete pWW0 nucleotide sequence revealed 148 putative open reading frames. Of these, 77 showed similarity to published sequences in the available databases predicting functions for: plasmid replication, stable maintenance and transfer; phenotypic determinants; gene regulation and expression; and transposition. All identifiable transposition functions lay within the boundaries of the 70 kb transposon Tn4653, leaving a 46 kb sector containing all the IncP-9 core functions. The replicon and stable inheritance region was very similar to the mini-replicon from IncP-9 antibiotic resistance plasmid pM3, with their Rep proteins forming a novel group of initiation proteins. pWW0 transfer functions exist as two blocks encoding putative DNA processing and mating pair formation genes, with organizational and sequence similarity to IncW plasmids. In addition to the known Tn4651 and IS1246 elements, two additional transposable elements were identified as well as several putative transposition functions, which are probably genetic remnants from previous transposition events. Genes likely to be responsible for known resistance to ultraviolet light and free radicals were identified. Other putative phenotypic functions identified included resistance to mercury and other metal ions, as well as to quaternary ammonium compounds. The complexity and size of pWW0 is largely the result of the mosaic organization of the transposable elements that it carries, rather than the backbone functions of IncP-9 plasmids. [source] RESURRECTING THE ROLE OF TRANSCRIPTION FACTOR CHANGE IN DEVELOPMENTAL EVOLUTIONEVOLUTION, Issue 9 2008Vincent J. Lynch A long-standing question in evolutionary and developmental biology concerns the relative contribution of cis- regulatory and protein changes to developmental evolution. Central to this argument is which mutations generate evolutionarily relevant phenotypic variation? A review of the growing body of evolutionary and developmental literature supports the notion that many developmentally relevant differences occur in the cis -regulatory regions of protein-coding genes, generally to the exclusion of changes in the protein-coding region of genes. However, accumulating experimental evidence demonstrates that many of the arguments against a role for proteins in the evolution of gene regulation, and the developmental evolution in general, are no longer supported and there is an increasing number of cases in which transcription factor protein changes have been demonstrated in evolution. Here, we review the evidence that cis- regulatory evolution is an important driver of phenotypic evolution and provide examples of protein-mediated developmental evolution. Finally, we present an argument that the evolution of proteins may play a more substantial, but thus far underestimated, role in developmental evolution. [source] A study on genomic distribution and sequence features of human long inverted repeats reveals species-specific intronic inverted repeatsFEBS JOURNAL, Issue 7 2009Yong Wang The inverted repeats present in a genome play dual roles. They can induce genomic instability and, on the other hand, regulate gene expression. In the present study, we report the distribution and sequence features of recombinogenic long inverted repeats (LIRs) that are capable of forming stable stem-loops or palindromes within the human genome. A total of 2551 LIRs were identified, and 37% of them were located in long introns (largely > 10 kb) of genes. Their distribution appears to be random in introns and is not restrictive, even for regions near intron,exon boundaries. Almost half of them comprise TG/CA-rich repeats, inversely arranged Alu repeats and MADE1 mariners. The remaining LIRs are mostly unique in their sequence features. Comparative studies of human, chimpanzee, rhesus monkey and mouse orthologous genes reveal that human genes have more recombinogenic LIRs than other orthologs, and over 80% are human-specific. The human genes associated with the human-specific LIRs are involved in the pathways of cell communication, development and the nervous system, as based on significantly over-represented Gene Ontology terms. The functional pathways related to the development and functions of the nervous system are not enriched in chimpanzee and mouse orthologs. The findings of the present study provide insight into the role of intronic LIRs in gene regulation and primate speciation. [source] Transcription of mammalian cytochrome c oxidase subunit IV-2 is controlled by a novel conserved oxygen responsive elementFEBS JOURNAL, Issue 21 2007Maik Hüttemann Subunit 4 of cytochrome c oxidase (CcO) is a nuclear-encoded regulatory subunit of the terminal complex of the mitochondrial electron transport chain. We have recently discovered an isoform of CcO 4 (CcO4-2) which is specific to lung and trachea, and is induced after birth. The role of CcO as the major cellular oxygen consumer, and the lung-specific expression of CcO4-2, led us to investigate CcO4-2 gene regulation. We cloned the CcO4-2 promoter regions of cow, rat and mouse and compared them with the human promoter. Promoter activity is localized within a 118-bp proximal region of the human promoter and is stimulated by hypoxia, reaching a maximum (threefold) under 4% oxygen compared with normoxia. CcO4-2 oxygen responsiveness was assigned by mutagenesis to a novel promoter element (5,-GGACGTTCCCACG-3,) that lies within a 24-bp region that is 79% conserved in all four species. This element is able to bind protein, and competition experiments revealed that, within the element, the four core bases 5,-TCNCA-3, are obligatory for transcription factor binding. CcO isolated from lung showed a 2.5-fold increased maximal turnover compared with liver CcO. We propose that CcO4-2 expression in highly oxygenated lung and trachea protects these tissues from oxidative damage by accelerating the last step in the electron transport chain, leading to a decrease in available electrons for free radical formation. [source] E2F1-mediated transcriptional inhibition of the plasminogen activator inhibitor type 1 geneFEBS JOURNAL, Issue 18 2001Magdalena Koziczak ,Gene expression of the plasminogen activation system is cell-cycle dependent. Previously, we showed that ectopic expression of E2F1 repressed the plasminogen activator inhibitor type 1 (PAI-1) promoter in a manner dependent on the presence of DNA-binding and transactivation domains of E2F1 but independent of binding to pocket-binding proteins, suggesting a novel mechanism for E2F-mediated negative gene regulation [Koziczak, M., Krek, W. & Nagamine, Y. (2000) Mol. Cell. Biol.20, 2014,2022]. However, it remains to be seen whether endogenous E2F can exert a similar effect. We report here that down-regulation of PAI-1 gene expression correlates with an increase in endogenous E2F activity. When cells were treated with a cdk2/4-specific inhibitor, which maintains E2F in an inactive state, the decline of serum-induced PAI-1 mRNA levels was suppressed. In mutant U2OS cells expressing a temperature-sensitive retinoblastoma protein (pRB), a shift to a permissive temperature induced PAI-1 mRNA expression. In U2OS cells stably expressing an E2F1-estrogen receptor chimeric protein that could be activated by tamoxifen, PAI-1 gene transcription was markedly reduced by tamoxifen even in the presence of cycloheximide. These results all indicate that endogenous E2F can directly repress the PAI-1 gene. DNase I hypersensitive-site analysis of the PAI-1 promoter suggested the involvement of conformation changes in chromatin structure of the PAI-1 promoter. 5, deletion analysis of the PAI-1 promoter showed that multiple sites were responsible for the E2F negative regulation, some of which were promoter dependent. Interestingly, one of these sites is a p53-binding element. [source] Role of glutathione in the formation of the active form of the oxygen sensor FNR ([4Fe-4S]·FNR) and in the control of FNR functionFEBS JOURNAL, Issue 15 2000Quang Hon Tran The oxygen sensor regulator FNR (fumarate nitrate reductase regulator) of Escherichia coli is known to be inactivated by O2 as the result of conversion of a [4Fe-4S] cluster of the protein into a [2Fe-2S] cluster. Further incubation with O2 causes loss of the [2Fe-2S] cluster and production of apoFNR. The reactions involved in cluster assembly and reductive activation of apoFNR isolated under anaerobic or aerobic conditions were studied in vivo and in vitro. In a gshA mutant of E. coli that was completely devoid of glutathione, the O2 tension for the regulatory switch for FNR-dependent gene regulation was decreased by a factor of 4,5 compared with the wild-type, suggesting a role for glutathione in FNR function. In isolated apoFNR, glutathione could be used as the reducing agent for HS, formation required for [4Fe-4S] assembly by cysteine desulfurase (NifS), and for the reduction of cysteine ligands of the FeS cluster in FNR. Air-inactivated FNR (apoFNR without FeS) could be reconstituted to [4Fe-4S]·FNR by the same reaction as used for apoFNR isolated under anaerobic conditions. The in vivo effects of glutathione on FNR function and the role of glutathione in the formation of active [4Fe-4S]·FNR in vitro suggest an important role for glutathione in the de novo assembly of FNR and in the reductive activation of air-oxidized FNR under anaerobic conditions. [source] Histone modifications and chromatin dynamics: a focus on filamentous fungiFEMS MICROBIOLOGY REVIEWS, Issue 3 2008Gerald Brosch Abstract The readout of the genetic information of eukaryotic organisms is significantly regulated by modifications of DNA and chromatin proteins. Chromatin alterations induce genome-wide and local changes in gene expression and affect a variety of processes in response to internal and external signals during growth, differentiation, development, in metabolic processes, diseases, and abiotic and biotic stresses. This review aims at summarizing the roles of histone H1 and the acetylation and methylation of histones in filamentous fungi and links this knowledge to the huge body of data from other systems. Filamentous fungi show a wide range of morphologies and have developed a complex network of genes that enables them to use a great variety of substrates. This fact, together with the possibility of simple and quick genetic manipulation, highlights these organisms as model systems for the investigation of gene regulation. However, little is still known about regulation at the chromatin level in filamentous fungi. Understanding the role of chromatin in transcriptional regulation would be of utmost importance with respect to the impact of filamentous fungi in human diseases and agriculture. The synthesis of compounds (antibiotics, immunosuppressants, toxins, and compounds with adverse effects) is also likely to be regulated at the chromatin level. [source] Regulation of whole bacterial pathogen transcription within infected hostsFEMS MICROBIOLOGY REVIEWS, Issue 3 2008My-Van La Abstract DNA microarrays are a powerful and promising approach to gain a detailed understanding of the bacterial response and the molecular cross-talk that can occur as a consequence of host,pathogen interactions. However, published studies mainly describe the host response to infection. Analysis of bacterial gene regulation in the course of infection has confronted many challenges. This review summarizes the different strategies used over the last few years to investigate, at the genomic scale, and using microarrays, the alterations in the bacterial transcriptome in response to interactions with host cells. Thirty-seven studies involving 19 different bacterial pathogens were compiled and analyzed. Our in silico comparison of the transcription profiles of bacteria grown in broth or in contact with eukaryotic cells revealed some features commonly observed when bacteria interact with host cells, including stringent response and cell surface remodeling. [source] Chromosome instability in Candida albicansFEMS YEAST RESEARCH, Issue 1 2007Elena Rustchenko Abstract Candida albicans maintains genetic diversity by random chromosome alterations, and this diversity allows utilization of various nutrients. Although the alterations seem to occur spontaneously, their frequencies clearly depend on environmental factors. In addition, this microorganism survives in adverse environments, which cause lethality or inhibit growth, by altering specific chromosomes. A reversible loss or gain of one homolog of a specific chromosome in this diploid organism was found to be a prevalent means of adaptation. We found that loss of an entire chromosome is required because it carries multiple functionally redundant negative regulatory genes. The unusual mode of gene regulation in Candida albicans implies that genes in this organism are distributed nonrandomly over chromosomes. [source] Repressive domain of unliganded human estrogen receptor , associates with Hsc70GENES TO CELLS, Issue 12 2005Satoko Ogawa Estrogen receptor (ER) is a hormone-inducible transcription factor as a member of the nuclear receptor gene superfamily. Unliganded ER is transcriptionally silent and capable of DNA binding; however, it is unable to suppress the basal activity of the target gene promoters, unlike non-steroid hormone receptors that associate with corepressors in the absence of their cognate ligands. To study the molecular basis of how unliganded human ER, is maintained silent in gene regulation upon the target gene promoters, we biochemically searched interactants for hER,, and identified heat shock protein 70 (Hsc70). Hsc70 appeared to associate with the N-terminal hormone binding E domain, that also turned out a transcriptionally repressive domain. Competitive association of Hsc70 with a best known coactivator p300 was observed. Thus, these findings suggest that Hsc70 associates with unliganded hER,, and thereby deters hER, from recruiting transcriptional coregulators, presumably as a component of chaperone complexes. [source] Cross talking of network motifs in gene regulation that generates temporal pulses and spatial stripesGENES TO CELLS, Issue 11 2005Shuji Ishihara Gene regulatory networks contain several substructures called network motifs, which frequently exist throughout the networks. One of such motifs found in Escherichia coli, Saccharomyces cerevisiae, and Drosophila melanogaster is the feed-forward loop, in which an effector regulates its target by a direct regulatory interaction and an indirect interaction mediated by another gene product. Here, we theoretically analyze the behavior of networks that contain feed-forward loops cross talking to each other. In response to levels of the effecter, such networks can generate multiple rise-and-fall temporal expression profiles and spatial stripes, which are typically observed in developmental processes. The mechanism to generate these responses reveals the way of inferring the regulatory pathways from experimental results. Our database study of gene regulatory networks indicates that most feed-forward loops actually cross talk. We discuss how the feed-forward loops and their cross talks can play important roles in morphogenesis. [source] Diversity of the cadherin-related neuronal receptor/protocadherin family and possible DNA rearrangement in the brainGENES TO CELLS, Issue 1 2003Takeshi Yagi Both the brain and the immune systems are complex. The complexity is generated by enormously diversified single cells. In the immune system, extensive cell death, gene regulation of immunoglobulin (Ig) and T-cell receptor (TCR) gene expression, and somatic rearrangement and mutations are known to generate an enormous diversity of lymphocytes. In this process, double-strand DNA breaks (DSBs) and DSB repair play significant roles. These processes at a DNA level are also physiologically significant in the nervous system during neurogenesis, and chromosomal variations have been detected in the nucleus of differentiated neurones. In another parallel with the immune system, cadherin-related neuronal receptors (CNRs) are diversified synaptic proteins. The CNR genes belong to protocadherin (Pcdh) gene clusters. Genomic organizations of CNR/Pcdh genes are similar to that of the Ig and TCR genes. Somatic mutations in and combinatorial gene regulation of CNR/Pcdh transcripts during neurogenesis have been reported. This review focuses on the diversity of the CNR/Pcdh genes and possible DNA diversification in the nervous system. [source] |