Gene Ontology Analysis (gene + ontology_analysis)

Distribution by Scientific Domains


Selected Abstracts


A phase I clinical trial of interferon-beta gene therapy for high-grade glioma: novel findings from gene expression profiling and autopsy

THE JOURNAL OF GENE MEDICINE, Issue 4 2008
Toshihiko Wakabayashi
Background High-grade gliomas are highly lethal neoplasms representing approximately 20% of all intracranial tumors. Cationic liposome-mediated interferon-beta (IFN- ,) gene transfer has been found to induce regression of experimental glioma. We have previously performed a pilot clinical trial to evaluate the safety and effectiveness of this IFN- , gene therapy in five patients with high-grade glioma. Two patients showed more than 50% reduction while others had stable disease 10 weeks after treatment initiation. Methods To identify alterations in gene expression in brain tumors 2 weeks after the gene therapy trial, we used a microarray technology and Gene Ontology analysis. The results were validated by patients' clinical course and findings of histology and autopsy. Results and conclusions Using hierarchical clustering and principal component analysis, five series of gene therapy trials were classified according to the response to IFN- , gene therapy. Significant changes in gene expression related to immunoresponse and apoptosis were observed. Moreover, novel patterns of altered gene expression, such as inhibition of neovascularization, were identified, suggesting the involvement of pathways reported previously as not involved. Autopsy and histological examinations revealed dramatic changes in the tumor tissues after therapy in all patients. Many tumor cells showed necrotic changes, and immunohistochemistry identified numerous CD8-positive lymphocytes and macrophages infiltrating the tumor and surrounding tissues; these were probably the effects of therapy. Simultaneously, CD34-immunoreactive vessels were notably decreased in the vector-injected brain. This study facilitates the understanding of the antitumor mechanism and helps identify candidate target molecules for new approaches. However, additional clinical trials are warranted. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Upregulation of the tumor suppressor gene menin in hepatocellular carcinomas and its significance in fibrogenesis,

HEPATOLOGY, Issue 5 2006
Pierre J. Zindy
The molecular mechanisms underlying the progression of cirrhosis toward hepatocellular carcinoma were investigated by a combination of DNA microarray analysis and literature data mining. By using a microarray screening of suppression subtractive hybridization cDNA libraries, we first analyzed genes differentially expressed in tumor and nontumor livers with cirrhosis from 15 patients with hepatocellular carcinomas. Seventy-four genes were similarly recovered in tumor (57.8% of differentially expressed genes) and adjacent nontumor tissues (64% of differentially expressed genes) compared with histologically normal livers. Gene ontology analyses revealed that downregulated genes (n = 35) were mostly associated with hepatic functions. Upregulated genes (n = 39) included both known genes associated with extracellular matrix remodeling, cell communication, metabolism, and post-transcriptional regulation gene (e.g., ZFP36L1), as well as the tumor suppressor gene menin (multiple endocrine neoplasia type 1; MEN1). MEN1 was further identified as an important node of a regulatory network graph that integrated array data with array-independent literature mining. Upregulation of MEN1 in tumor was confirmed in an independent set of samples and associated with tumor size (P = .016). In the underlying liver with cirrhosis, increased steady-state MEN1 mRNA levels were correlated with those of collagen ,2(I) mRNA (P < .01). In addition, MEN1 expression was associated with hepatic stellate cell activation during fibrogenesis and involved in transforming growth factor beta (TGF-,),dependent collagen ,2(I) regulation. In conclusion, menin is a key regulator of gene networks that are activated in fibrogenesis associated with hepatocellular carcinoma through the modulation of TGF-, response. (HEPATOLOGY 2006;44:1296,1307.) [source]


Expression of contactin associated protein-like 2 in a subset of hepatic progenitor cell compartment identified by gene expression profiling in hepatitis B virus-positive cirrhosis

LIVER INTERNATIONAL, Issue 1 2010
Huafeng Wang
Abstract Background: Hepatic progenitor cells (HPC), a cell compartment capable of differentiating into hepatocytic and biliary lineages, may give rise to the formation of intermediate hepatobiliary cells (IHBC) or ductular reactions (DR). Aims: The aim of this study was to analyse the gene expression profiles of DR in cirrhosis and further investigate novel proteins expressed by HPC and their intermediate progeny. Methods: DR in hepatitis B virus (HBV)-positive cirrhotic liver tissues adjacent to hepatocellular carcinoma and interlobular bile ducts (ILBDs) in normal liver tissues were isolated by laser capture microdissection and then subjected to microarray analysis. Differential gene expression patterns were verified by quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry on serial sections. HPC and their intermediate progeny were recognized by immunostaining with hepatocytic and biliary markers [HepPar1, cytokeratin (CK)7, CK19, neural cell adhesion molecule (NCAM), epithelial cell adhesion molecule (EpCAM)]. Results: A total of 88 genes showed upregulation in DR compared with ILBDs. Gene ontology analyses revealed that these upregulated genes were mostly associated with cell adhesion, immune response and the metabolic process. Contactin associated protein-like 2 (CNTNAP2) was first confirmed to be a novel protein expressed in a subpopulation of DR that was positive for CK7, NCAM or EpCAM. In addition, immunoreactivity for CNTNAP2 was also noted in a subset of isolated CK7-positive HPC as well as some ductular IHBC positive for CK19 and HepPar1 in DR. Conclusion: CNTNAP2 is specifically associated with the emergence of ductular populations and may be identified as a novel protein for defining a subset of HPC and their intermediate progeny in cirrhosis. [source]


Optimization of the culturing conditions of human umbilical cord blood-derived endothelial colony-forming cells under xeno-free conditions applying a transcriptomic approach

GENES TO CELLS, Issue 7 2010
Steffen M. Zeisberger
Establishment of fetal bovine serum (FBS)-free cell culture conditions is essential for transplantation therapies. Blood-derived endothelial colony-forming cells (ECFCs) are potential candidates for regenerative medicine applications. ECFCs were isolated from term umbilical cord blood units and characterized by flow cytometry, capillary formation and responsiveness to cytokines. ECFCs were expanded under standard, FBS-containing endothelial medium, or transferred to chemically defined endothelial media without FBS. Microarray expression profiling was applied to compare the transcriptome profiles in FBS-containing versus FBS-free culture. ECFC outgrowth in standard medium was successful in 92% of cord blood units. The karyotype of expanded ECFCs remained normal. Without FBS, ECFC initiation and expansion failed. Modest proliferation, changes in cell morphology and organization and cell death have been observed after passaging. Gene ontology analysis revealed a broad down-regulation of genes involved in cell cycle progression and up-regulation of genes involved in stress response and apoptosis. Interestingly, genes participating in lipid biosynthesis were markedly up-regulated. Detection of several endothelial cell-specific marker genes showed the maintenance of the endothelial cell characteristics during serum-free culture. Although ECFCs maintain their endothelial characteristics during serum-free culturing, they could not be expanded. Additional supply of FBS-free media with lipid concentrates might increase the ECFC survival. [source]


Developmental and activity-dependent genomic occupancy profiles of CREB in monkey area V1

GENES, BRAIN AND BEHAVIOR, Issue 2 2009
J. Lalonde
The mammalian neocortex displays significant plastic rearrangement in response to altered sensory input, especially during early postnatal development. It is believed that cyclic AMP-response element-binding (CREB) plays an important role in orchestrating the molecular events that guide neuroplastic change, although the details of its genomic targets during normal postnatal development or in response to sensory deprivation remain unknown. Here, we performed CREB chromatin immunoprecipitation (ChIP) from monkey area V1 tissue and hybridized enriched DNA fragments to promoter microarrays (ChIP chip analysis). Our goal was to determine and categorize the CREB regulon in monkey area V1 at two distinct developmental stages (peak of critical period vs. adulthood) and after 5 days of monocular enucleation (ME) at both ages. Classification of enriched candidates showed that the majority of isolated promoter loci (n = 795) were common to all four conditions. A particularly interesting group of candidates (n = 192) was specific to samples derived from enucleated infant area V1. Gene ontology analysis of CREB targets during early postnatal development showed a subgroup of genes implicated in cytoskeleton-based structural modification. Analysis of messenger RNA expression (quantitative real-time,polymerase chain reaction) of candidate genes showed striking differences in expression profiles between infant and adult area V1 after ME. Our study represents the first extensive genomic analysis of CREB DNA occupancy in monkey neocortex and provides new insight into the multifaceted transcriptional role of CREB in guiding neuroplastic change. [source]


Acute experimental colitis and human chronic inflammatory diseases share expression of inflammation-related genes with conserved Ets2 binding sites

INFLAMMATORY BOWEL DISEASES, Issue 2 2009
Tineke C.T.M. van der Pouw Kraan PhD
Abstract Background: Ulcerative colitis (UC) and Crohn's disease (CD) are characterized by chronic inflammation of the gastrointestinal tract, with overlapping clinical characteristics and unknown etiology. We reasoned that in intestinal inflammation the initial activation of the innate immune response fails to resolve, finally resulting in uncontrolled chronic inflammatory bowel disease. Methods: To identify the early inflammatory events in colitis that remain active in human chronic colitis, we analyzed the changes of the colonic transcriptome during acute experimental colitis and compared the outcome with previously published profiles of affected tissues from patients with UC and CD, and as a control for intestinal inflammation in general, tissues from celiac disease patients. Rheumatoid arthritis synovial tissues were included as a nonintestinal inflammatory disease. The expression profiles of each disease were analyzed separately, in which diseased tissues were compared to unaffected tissues from the same anatomical location. Results: Gene ontology analysis of significantly regulated genes revealed a marked activation of immunity and defense processes in all diseases, except celiac disease, where immune activation is less prominent. The control region of upregulated genes contained an increase in Ets2 binding sites in experimental colitis, UC, and rheumatoid arthritis, and were associated with upregulated immune activity. In contrast, upregulated genes in celiac disease harbored the transcription factor binding site GLI, which binds to the Gli family of transcription factors involved in hedgehog signaling, affecting development and morphogenesis. Conclusion: Ets2 may be an important transcription factor driving inflammation in acute as well as chronic inflammatory disease. (Inflamm Bowel Dis 2008) [source]


Adaptive differences in gene expression associated with heavy metal tolerance in the soil arthropod Orchesella cincta

MOLECULAR ECOLOGY, Issue 15 2009
DICK ROELOFS
Abstract Field-selected tolerance to heavy metals has been reported for Orchesella cincta (Arthropoda: Collembola) populations occurring at metal-contaminated mining sites. This tolerance correlated with heritable increase in metal excretion efficiency, less pronounced cadmium (Cd)-induced growth reduction and overexpression of the metallothionein gene. We applied transcriptomics to determine differential gene expression caused by this abiotic stress in reference and Cd-tolerant populations. Many cDNAs responded to Cd exposure in the reference population. Significantly fewer clones were Cd responsive in tolerant animals. Analysis of variance revealed transcripts that interact between Cd exposure and population. Hierarchical cluster analysis of these clones identified two major groups. The first one contained cDNAs that were up-regulated by Cd in the reference culture but non-responsive or down-regulated in tolerant animals. This cluster was also characterized by elevated constitutive expression in the tolerant population. Gene ontology analysis revealed that these cDNAs were involved in structural integrity of the cuticle, anti-microbial defence, calcium channel-blocking, sulphur assimilation and chromatin remodelling. The second group consisted of cDNAs down-regulated in reference animals but not responding or slightly up-regulated in tolerant animals. Their functions involved carbohydrate metabolic processes, Ca2+ -dependent stress signalling, redox state, proteolysis and digestion. The reference population showed a strong signature of stress-induced genome-wide perturbation of gene expression, whereas the tolerant animals maintained normal gene expression upon Cd exposure. We confirmed the micro-evolutionary processes occurring in soil arthropod populations and suggest a major contribution of gene regulation to the evolution of a stress-adapted phenotype. [source]


The secreted proteome profile of developing Dictyostelium discoideum cells

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 13 2010
Deenadayalan Bakthavatsalam
Abstract Dictyostelium discoideum is a unicellular eukaryote that, when starved, aggregates to form multicellular structures. In this report, we identified the proteins secreted by developing Dictyostelium cells using MS-based proteomics. A total of 349 different secreted proteins were identified, indicating that at least 2.6% of the 13,600 predicted proteins in the Dictyostelium genome are secreted. Gene ontology analysis suggests that many of the secreted proteins are involved in protein and carbohydrate metabolism, and proteolysis. [source]


Gene profiling and pathway analysis of neuroendocrine transdifferentiated prostate cancer cells

THE PROSTATE, Issue 1 2009
Ryutaro Mori
Abstract BACKGROUND Neuroendocrine (NE) cells are present in both normal prostate and prostate cancer. In addition, NE differentiation can be induced by various factors, such as IL-6, in vitro and in vivo. However, the mechanism of this differentiation and the role of NE cells in prostate cancer are not well understood. In this study, we evaluated the gene expression and analyzed the pathways in prostate cancer cells exposed to various NE differentiation inducing factors in vitro. METHODS Gene expression signatures between control LNCaP cells and each treatment induced NE cell line were compared using Affymetrix GeneChip with network and pathway analysis. RESULTS All treatments were able to transdifferentiate LNCaP cells into NE phenotype as shown by morphology changes and NE marker measurements. Of the 54,675 oligonucleotide-based probe sets in microarray, 44,975 were mapped into the Ingenuity Pathway Analysis database and were filtered according to the t -test P value. At P,<,0.002, the number of genes that were differentially expressed included 302 of the IL-6 treated cells, 201 of genistein, 233 of epinephrine, and 191 of the charcoal stripped serum ones. A pooled data approach also showed 346 differentially expressed genes at the same P value. Gene ontology analysis showed that cancer-related function had the highest significance. CONCLUSIONS Despite some overlap, each NE transdifferentiation inducing treatment was associated with a changed expression of a unique set of genes, and such gene profiling may help to elucidate the molecular mechanisms involved in NE transdifferentiation of prostate cancer cells. Prostate 69: 12,23, 2009. © 2008 Wiley,Liss, Inc. [source]


Variants within MECP2, a key transcription regulator, are associated with increased susceptibility to lupus and differential gene expression in patients with systemic lupus erythematosus

ARTHRITIS & RHEUMATISM, Issue 4 2009
Ryan Webb
Objective Both genetic and epigenetic factors play an important role in the pathogenesis of lupus. The aim of this study was to examine methyl-CpG,binding protein 2 gene (MECP2) polymorphisms in a large cohort of patients with lupus and control subjects, and to determine the functional consequences of the lupus-associated MECP2 haplotype. Methods We genotyped 18 single-nucleotide polymorphisms within MECP2, located on chromosome Xq28, in a large cohort of patients with lupus and control subjects of European descent. We studied the functional effects of the lupus-associated MECP2 haplotype by determining gene expression profiles in B cell lines in female lupus patients with and those without the lupus-associated MECP2 risk haplotype. Results We confirmed, replicated, and extended the genetic association between lupus and genetic markers within MECP2 in a large independent cohort of lupus patients and control subjects of European descent (odds ratio 1.35, P = 6.65 × 10,11). MECP2 is a dichotomous transcription regulator that either activates or represses gene expression. We identified 128 genes that are differentially expressed in lupus patients with the disease-associated MECP2 haplotype; most (,81%) were up-regulated. Genes that were up-regulated had significantly more CpG islands in their promoter regions compared with genes that were down-regulated. Gene ontology analysis using the differentially expressed genes revealed significant association with epigenetic regulatory mechanisms, suggesting that these genes are targets for MECP2 regulation in B cells. Furthermore, at least 13 of the 104 up-regulated genes are regulated by interferon. The disease-risk MECP2 haplotype was associated with increased expression of the MECP2 transcription coactivator CREB1 and decreased expression of the corepressor histone deacetylase 1. Conclusion Polymorphism in the MECP2 locus is associated with lupus and, at least in part, contributes to the interferon signature observed in lupus patients. [source]


Strain- and region-specific gene expression profiles in mouse brain in response to chronic nicotine treatment

GENES, BRAIN AND BEHAVIOR, Issue 1 2008
J. Wang
A pathway-focused complementary DNA microarray and gene ontology analysis were used to investigate gene expression profiles in the amygdala, hippocampus, nucleus accumbens, prefrontal cortex (PFC) and ventral tegmental area of C3H/HeJ and C57BL/6J mice receiving nicotine in drinking water (100 ,g/ml in 2% saccharin for 2 weeks). A balanced experimental design and rigorous statistical analysis have led to the identification of 3.5,22.1% and 4.1,14.3% of the 638 sequence-verified genes as significantly modulated in the aforementioned brain regions of the C3H/HeJ and C57BL/6J strains, respectively. Comparisons of differential expression among brain tissues showed that only a small number of genes were altered in multiple brain regions, suggesting presence of a brain region-specific transcriptional response to nicotine. Subsequent principal component analysis and Expression Analysis Systematic Explorer analysis showed significant enrichment of biological processes both in C3H/HeJ and C57BL/6J mice, i.e. cell cycle/proliferation, organogenesis and transmission of nerve impulse. Finally, we verified the observed changes in expression using real-time reverse transcriptase polymerase chain reaction for six representative genes in the PFC region, providing an independent replication of our microarray results. Together, this report represents the first comprehensive gene expression profiling investigation of the changes caused by nicotine in brain tissues of the two mouse strains known to exhibit differential behavioral and physiological responses to nicotine. [source]


Proteins differentially expressed in response to nicotine in five rat brain regions: Identification using a 2-DE/MS-based proteomics approach

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 10 2006
Yoon Y. Hwang
Abstract To determine protein expression patterns within the central nervous system,(CNS) in response to nicotine, 2-DE/MS was performed on samples from five brain regions of rats that had received nicotine bitartrate by osmotic minipump infusion at a dose of 3.15,mg/kg/day for 7,days. After spot matching and statistical analysis, 41,spots in the amygdala, 49 in the nucleus accumbens,(NA), 46 in the prefrontal cortex (PFC), 36 in the striatum, and 28 in the ventral tegmental area,(VTA) showed significant differences in the nicotine-treated compared with control samples. Using MALDI-TOF,MS peptide fingerprinting, 14,proteins in the amygdala, 11 in the NA, 19 in the PFC, 13 in the striatum, and 19 in the VTA were identified. Several proteins (e.g. dynamin,1, laminin receptors, aldolase,A, enolase,1 alpha, Hsc70-ps1, and N -ethylmaleimide-sensitive fusion protein) were differentially expressed in multiple brain regions. By gene ontology analysis, these differentially expressed proteins were grouped into biological process categories, such as energy metabolism, synaptic function, and oxidative stress metabolism. These data, in combination with microarray analysis of mRNA transcripts, have the potential to identify the CNS gene products that show coordinated changes in expression at both the RNA and protein levels in response to nicotine. [source]


Gene expression profiling of advanced-stage serous ovarian cancers distinguishes novel subclasses and implicates ZEB2 in tumor progression and prognosis

CANCER SCIENCE, Issue 8 2009
Kosuke Yoshihara
To elucidate the mechanisms of rapid progression of serous ovarian cancer, gene expression profiles from 43 ovarian cancer tissues comprising eight early stage and 35 advanced stage tissues were carried out using oligonucleotide microarrays of 18 716 genes. By non-negative matrix factorization analysis using 178 genes, which were extracted as stage-specific genes, 35 advanced stage cases were classified into two subclasses with superior (n = 17) and poor (n = 18) outcome evaluated by progression-free survival (log rank test, P = 0.03). Of the 178 stage-specific genes, 112 genes were identified as showing different expression between the two subclasses. Of the 48 genes selected for biological function by gene ontology analysis or Ingenuity Pathway Analysis, five genes (ZEB2, CDH1, LTBP2, COL16A1, and ACTA2) were extracted as candidates for prognostic factors associated with progression-free survival. The relationship between high ZEB2 or low CDH1 expression and shorter progression-free survival was validated by real-time RT-PCR experiments of 37 independent advanced stage cancer samples. ZEB2 expression was negatively correlated with CDH1 expression in advanced stage samples, whereas ZEB2 knockdown in ovarian adenocarcinoma SKOV3 cells resulted in an increase in CDH1 expression. Multivariate analysis showed that high ZEB2 expression was independently associated with poor prognosis. Furthermore, the prognostic effect of E-cadherin encoded by CDH1 was verified using immunohistochemical analysis of an independent advanced stage cancer samples set (n = 74). These findings suggest that the expression of epithelial,mesenchymal transition-related genes such as ZEB2 and CDH1 may play important roles in the invasion process of advanced stage serous ovarian cancer. (Cancer Sci 2009) [source]