Home About us Contact | |||
Gene Fusions (gene + fusion)
Selected AbstractsDefining the molecular action of HDAC inhibitors and synergism with androgen deprivation in ERG-positive prostate cancerINTERNATIONAL JOURNAL OF CANCER, Issue 12 2008Mari Björkman Abstract Gene fusions between prostate-specific, androgen responsive TMPRSS2 gene and oncogenic ETS factors, such as ERG, occur in up to 50% of all prostate cancers. We recently defined a gene signature that was characteristic to prostate cancers with ERG activation. This suggested epigenetic reprogramming, such as upregulation of histone deactylase 1 (HDAC1) gene and downregulation of its target genes. We then hypothesized that patients with ERG -positive prostate cancers may benefit from epigenetic therapy such as HDAC inhibition (HDACi), especially in combination with antiandrogens. Here, we exposed ERG -positive prostate cancer cell lines to HDAC inhibitors Trichostatin A (TSA), MS-275 and suberoylanilide hydroxamic acid (SAHA) with or without androgen deprivation. We explored the effects on cell phenotype, gene expression as well as ERG and androgen receptor (AR) signaling. When compared with 5 other prostate cell lines, ERG -positive VCaP and DuCap cells were extremely sensitive to HDACi, in particular TSA, showing synergy with concomitant androgen deprivation increasing apoptosis. Both of the HDAC inhibitors studied caused repression of the ERG -fusion gene, whereas the pan-HDAC inhibitor TSA prominently repressed the ERG -associated gene signature. Additionally, HDACi and flutamide caused retention of AR in the cytoplasm, indicating blockage of androgen signaling. Our results support the hypothesis that HDACi, especially in combination with androgen deprivation, is effective against TMPRSS2-ERG -fusion positive prostate cancer in vitro. Together with our previous in vivo observations of an "epigenetic reprogramming gene signature" in clinical ERG -positive prostate cancers, these studies provide mechanistic insights to ERG -associated tumorigenesis and suggest therapeutic paradigms to be tested in vivo. © 2008 Wiley-Liss, Inc. [source] Transcriptional readthrough of Hox genes Ubx and Antp and their divergent post-transcriptional control during crustacean evolutionEVOLUTION AND DEVELOPMENT, Issue 5 2006Yasuhiro Shiga SUMMARY Hox genes are in principle tandemly arranged in an order colinear with their order of expression along the anterior,posterior axis. Combinations of Hox proteins encode information that specifies the unique characteristics of axial regions in the metazoan body plan. The independent regulation of Hox genes achieved by differential promoter activity is essential for the expression of Hox proteins in distinct territories and thereby creating a full repertoire of Hox codes. Here we report the abundant expression of transcriptional readthrough products of two adjacent Hox genes, Ubx, and Antp, in five crustacean species of Branchiopoda and Malacostraca. Bicistronic mRNA places Antp under the control of the Ubx promoter, which is active in the posterior segments of two branchiopodans Daphnia and Artemia, and would normally reduce the complexity of Hox codes if translated. This does not occur, however, as the translational capability of the bicistronic mRNA is limited. In Daphnia, bicistronic Ubx/Antp mRNA produced no significant level of either UBX or ANTP. In Artemia, on the other hand, the bicistronic mRNA produced only UBX, and replaced the role of monocistronic Ubx mRNA. In this way, multiple post-transcriptional control mechanisms in two extant branchiopodans can be seen as preventing the potentially deleterious consequences of Hox gene fusion. [source] EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytomaGENES, CHROMOSOMES AND CANCER, Issue 12 2007Cristina R. Antonescu The molecular hallmark of angiomatoid fibrous histiocytoma (AFH) is not well defined, with only six cases with specific gene fusions reported to date, consisting of either FUS-ATF1 or EWSR1-ATF1. To address this, we investigated the presence of FUS-ATF1, EWSR1-ATF1, and the highly related EWSR1-CREB1 fusion in a group of nine AFHs. All cases were subjected to RT-PCR for EWSR1-ATF1 and EWSR1-CREB1. FISH for EWSR1 and FUS rearrangements was performed in most cases. Transcriptional profiling was performed in three tumors and their gene expression was compared to five clear cell sarcomas expressing either the EWSR1-ATF1 or EWSR1-CREB1 fusion. By RT-PCR, eight out of nine tumors showed the presence of the EWSR1-CREB1 fusion, while one had an EWSR1-ATF1 transcript. FISH showed evidence of EWSR1 rearrangement in seven out of eight cases. Karyotypic analysis performed in one tumor showed a t(2;22)(q33;q12). High transcript levels were noted for TFE3 in AFH tumors, while overexpression of genes involved in melanogenesis, such as MITF, GP100, and MET was noted in somatic clear cell sarcomas. We report for the first time the presence of EWSR1-CREB1 in AFH, which now appears to be the most frequent gene fusion in this tumor. EWSR1-CREB1 is a novel translocation recently described in clear cell sarcoma of the GI tract. EWSR1-ATF1, identified in some AFH cases, is the most common genetic abnormality in soft tissue clear cell sarcoma. Thus, identical fusions involving ATF1 and CREB1 are found in two distinct sarcomas, which may be able to transform two different types of mesenchymal precursor cells, unlike most other sarcoma gene fusions. © 2007 Wiley-Liss, Inc. [source] Myxoid liposarcoma FUS-DDIT3 fusion oncogene induces C/EBP ,-mediated interleukin 6 expressionINTERNATIONAL JOURNAL OF CANCER, Issue 4 2005Melker Göransson Abstract The myxoid/round cell liposarcoma oncogene FUS-DDIT3 is the result of a translocation derived gene fusion between the splicing factor FUS and DDIT3. In order to investigate the downstream targets of DDIT3, and the transforming effects of the FUS-DDIT3 fusion protein, we have introduced DDIT3-GFP and FUS-DDIT3-GFP constructs into a human fibrosarcoma cell line. The gene expression profiles of stable transfectants were compared to the original fibrosarcoma cell line by microarray analysis. We here report that the NF,B and C/EBP , controlled gene IL6 is upregulated in DDIT3- and FUS-DDIT3-expressing fibrosarcoma cell lines and in myxoid liposarcoma cell lines. Strong expression of the tumor associated multifunctional cytokine interleukin 6 was confirmed both at mRNA and protein level. Knockdown experiments using siRNA against CEBPB transcripts showed that the effect of FUS-DDIT3 on IL6 expression is C/EBP , dependent. Chromatin immunoprecipitation revealed direct interaction between the IL6 promoter and the C/EBP , protein. In addition, the effect of DDIT3 and FUS-DDIT3 on the expression of other acute phase genes was examined using real-time PCR. We demonstrate for the first time that DDIT3 and FUS-DDIT3 show opposite transcriptional regulation of IL8 and suggest that FUS-DDIT3 may affect the synergistic activation of promoters regulated by C/EBP ,,B. © 2005 Wiley-Liss, Inc. [source] A novel FIP1L1-PDGFRA mutant destabilizing the inactive conformation of the kinase domain in chronic eosinophilic leukemia/hypereosinophilic syndromeALLERGY, Issue 6 2009S. Salemi Background:, The Fip1-like-1,platelet-derived growth factor receptor alpha (FIP1L1-PDGFRA) gene fusion is a common cause of chronic eosinophilic leukemia (CEL)/hypereosinophilic syndrome (HES), and patients suffering from this particular subgroup of CEL/HES respond to low-dose imatinib therapy. However, some patients may develop imatinib resistance because of an acquired T674I mutation, which is believed to prevent drug binding through steric hindrance. Methods:, In an imatinib resistant FIP1L1-PDGFRA positive patient, we analyzed the molecular structure of the fusion gene and analyzed the effect of several kinase inhibitors on FIP1L1-PDGFRA-mediated proliferative responses in vitro. Results:, Sequencing of the FIP1L1-PDGFRA fusion gene revealed the occurrence of a S601P mutation, which is located within the nucleotide binding loop. In agreement with the clinical observations, imatinib did not inhibit the proliferation of S601P mutant FIP1L1-PDGFRA-transduced Ba/F3 cells. Moreover, sorafenib, which has been described to inhibit T674I mutant FIP1L1-PDGFRA, failed to block S601P mutant FIP1L1-PDGFRA. Structural modeling revealed that the newly identified S601P mutated form of PDGFRA destabilizes the inactive conformation of the kinase domain that is necessary to bind imatinib as well as sorafenib. Conclusions:, We identified a novel mutation in FIP1L1-PDGFRA resulting in both imatinib and sorafenib resistance. The identification of novel drug-resistant FIP1L1-PDGFRA variants may help to develop the next generation of target-directed compounds for CEL/HES and other leukemias. [source] Development of a dual-color, double fusion FISH assay to detect RPN1/EVI1 gene fusion associated with inv(3), t(3;3), and ins(3;3) in patients with myelodysplasia and acute myeloid leukemia,AMERICAN JOURNAL OF HEMATOLOGY, Issue 8 2010Brandon M. Shearer Approximately 2,3% of adult patients with acute myeloid leukemia harbor a rearrangement of RPN1 (at 3q21) and EVI1 (at 3q26.2) as inv(3)(q21q26.2), t(3;3)(q21;q26.2), or ins(3;3)(q26.2;q21q26.2). The most recent World Health Organization (WHO) classification has designated AML with inv(3) or t(3;3) and associated RPN1/EVI1 fusion, as a distinct AML subgroup associated with an unfavorable prognosis. We have created a dual color, double fusion fluorescence in situ hybridization (D-FISH) assay to detect fusion of the RPN1 and EVI1 genes. A blinded investigation was performed using 30 normal bone marrow samples and 51 bone marrow samples from 17 patients with inv(3)(q21q26.2), 11 patients with t(3;3)(q21;q26.2), and one patient with ins(3;3)(q26.2;q21q26.2) previously defined by chromosome analysis. The unblinded results indicated abnormal RPN1/EVI1 fusion results in 30 (97%) of 31 samples from the inv(3)(q21q26.2) group including seven bone marrow samples for which chromosome analysis was unsuccessful or failed to detect an inv(3)(q21q26.2). Abnormal FISH results were detected in 14 (88%) of 16 samples with t(3;3)(q21;q26.2) and in the sole sample with an ins(3;3)(q26.2;q21q26.2). All 30 negative controls were normal and were used to establish a normal cutoff of 0.6% for the typical abnormal D-FISH signal pattern. Overall, this D-FISH assay was more accurate than chromosome analysis and based on the normal cutoff of 0.6%, this assay can be used for minimal residual disease detection and disease monitoring in patients with RPN1/EVI1 fusion. Am. J. Hematol., 2010. © 2010 Wiley-Liss, Inc. [source] Spatial association of photosynthesis and chemical defense in Arabidopsis thaliana following herbivory by Trichoplusia niPHYSIOLOGIA PLANTARUM, Issue 2 2009Jennie Tang Because they share common precursors and require significant amounts of energy, photosynthesis and defense against herbivores and pathogens may be inversely related. This relationship was examined in Arabidopsis thaliana exposed to herbivory by Trichoplusia ni neonates. The spatial pattern of photosynthesis was compared statistically with that of induction of the defense-related cinnamate-4-hydroxylase (C4H) gene across individual leaves exposed to herbivory in transgenic plants harboring a C4H:GUS gene fusion. In portions of the leaf where C4H:GUS expression was upregulated, photosynthesis was depressed, while non-photochemical quenching was increased, suggesting a trade-off between these two processes. However, photosynthetic damage spread further into surrounding areas than the induction of C4H:GUS expression. Photosynthetic depression was observed up to 1 mm from the edges of holes, whereas C4H:GUS induction typically was limited to about 0.5 mm or less from edges. Other mechanisms may be responsible for the spread of photosynthetic damage beyond where C4H-related defense was induced. Alternatively, C4H induction may reflect a subset of defensive responses more limited in their spatial distribution than the downregulation of photosynthesis. The suppression of photosynthesis in remaining leaf tissue represents a ,hidden cost' of herbivore damage. [source] TMPRSS2:ERG fusion transcripts in urine from prostate cancer patients correlate with a less favorable prognosisAPMIS, Issue 8 2009KARI ROSTAD Rostad K, Hellwinkel OJC, Haukaas SA, Halvorsen OJ, Øyan AM, Haese A, Budäus L, Albrecht H, Akslen LA, Schlomm T, Kalland K-H. TMPRSS2:ERG fusion transcripts in urine from prostate cancer patients correlate with a less favorable prognosis. APMIS 2009; 117: 575,82. The transcription factor ERG is highly upregulated in the majority of prostate cancers due to chromosomal fusion of the androgen responsive promoter of TMPRSS2 to the ERG reading frame. Our aim was to identify this gene fusion in urine samples from prostate cancer patients prior to radical treatment and to compare fusion status with clinicopathological variables. Urine fractions from 55 patients (with and without prior prostatic massage) were analyzed for the presence of TMPRSS2:ERG isoforms using real-time qPCR. Sixty-nine percent of urine samples following prostatic massage were positive for TMPRSS2:ERG isoforms a or b, five out of which were positive for both, vs 24% of samples obtained without prior massage. Isoform a seems to be most prevalent and some patients may be positive for more than one fusion variant, reflecting the multifocality of prostate cancer. Prostatic massage prior to sampling, analysis of pelleted urine material and detection of cDNA provided the highest sensitivity. Positive statistical correlations were identified between TMPRSS2:ERG fusion and high s-PSA, pathological stage and Gleason score. Our findings contribute to the increasing elucidation of the role of TMPRSS2:ERG in the development of prostate cancer. [source] Aetiology of childhood leukemiaBIOELECTROMAGNETICS, Issue S7 2005Tracy Lightfoot Abstract Leukemia is the most common cancer to affect children, accounting for approximately a third of all childhood cancers. The major morphological subtypes of leukemia, acute lymphoblastic leukemia (ALL), and acute myeloblastic leukemia (AML), are characterized by chromosomal translocations involving over 200 genes including mixed lineage leukemia (MLL), TEL, and AML1. Chromosomal translocations involving the MLL gene at 11q23 are a common feature of infant acute leukemia, found in up to 80% of all cases, and there is strong evidence that rearrangements involving the MLL gene or the TEL-AML1 gene fusion can originate in utero. As with most other cancers, the mechanism by which leukemia arises is likely to involve gene-environment interactions. Accordingly, it is important to identify exposures that cause DNA damage and induce chromosome breaks which are inadequately repaired, ultimately leading to the initiation and disease progression. Exposures acting before birth and early in life has long been thought to be important determinants of leukemia, and the list of suspected chemical, physical, and biological agents continues to increase. Unfortunately, the evidence regarding the majority of suggested exposures is limited and often contradictory, and there are areas, which clearly warrant further investigation in order to further our understanding of the aetiology of childhood leukemia. Bioelectromagnetics Supplement 7:S5,S11, 2005. © 2005 Wiley-Liss, Inc. [source] A novel beta-delta globin gene fusion, anti-Lepore Hong Kong, leads to overexpression of delta globin chain and a mild thalassaemia intermedia phenotype when co-inherited with ,0 -thalassaemiaBRITISH JOURNAL OF HAEMATOLOGY, Issue 1 2007Chi-Chiu So Summary Anti-Lepore haemoglobins (Hb) are rare ,, fusion variants that arise from non-homologous crossover during meiosis, resulting in a ,,,,,, configuration. A novel anti-Lepore mutation (anti-Lepore Hong Kong) was found in two Chinese families with raised Hb A2. Direct sequencing revealed a crossover within a 54-bp region spanning the junction of cap site (CAP) and exon 1, which predicted the production of normal , -globin. Determination of ,/, -mRNA ratios by quantitative real-time polymerase chain reaction demonstrated downregulation of the , gene in cis due to the interposed ,, fusion gene. Although heterozygotes have normal red cell indices and are clinically silent, compound heterozygotes with ,0 mutation in trans produce a mild thalassaemia intermedia phenotype with a markedly raised Hb A2 level that may mimic clinically mild Hb E- ,+ -thalassaemia. Awareness of the presence of anti-Lepore Hong Kong will help to resolve diagnostic problems in regions with significant prevalence of globin disorders. [source] Cadmium-regulated gene fusions in Pseudomonas fluorescensENVIRONMENTAL MICROBIOLOGY, Issue 4 2000Silvia Rossbach To study the mechanisms soil bacteria use to cope with elevated concentrations of heavy metals in the environment, a mutagenesis with the lacZ -based reporter gene transposon Tn5 -B20 was performed. Random gene fusions in the genome of the common soil bacterium Pseudomonas fluorescens strain ATCC 13525 were used to create a bank of 5000 P. fluorescens mutants. This mutant bank was screened for differential gene expression in the presence of the toxic metal cadmium. Fourteen mutants were identified that responded with increased or reduced gene expression to the presence of cadmium. The mutants were characterized with respect to their metal-dependent gene expression and their metal tolerance. Half the identified mutants reacted with differential gene expression specifically to the metal cadmium, whereas some of the other mutants also responded to elevated concentrations of copper and zinc ions. One of the mutants, strain C8, also showed increased gene expression in the presence of the solvent ethanol, but otherwise no overlap between cadmium-induced gene expression and general stress response was detected. Molecular analysis of the corresponding genetic loci was performed using arbitrary polymerase chain reaction (PCR), DNA sequencing and comparison of the deduced protein products with sequences deposited in genetic databases. Some of the genetic loci targeted by the transposon did not show any similarities to any known genes; thus, they may represent ,novel' loci. The hypothesis that genes that are differentially expressed in the presence of heavy metals play a role in metal tolerance was verified for one of the mutants. This mutant, strain C11, was hypersensitive to cadmium and zinc ions. In mutant C11, the transposon had inserted into a genetic region displaying similarity to genes encoding the sensor/regulator protein pairs of two-component systems that regulate gene expression in metal-resistant bacteria, including czcRS of Ralstonia eutropha, czrRS of Pseudomonas aeruginosa and copRS of Pseudomonas syringae. Although the P. fluorescens strain used in this study had not been isolated from a metal-rich environment, it nevertheless contained at least one genetic region enabling it to cope with elevated concentrations of heavy metals. [source] RegM is required for optimal fructosyltransferase and glucosyltransferase gene expression in Streptococcus mutansFEMS MICROBIOLOGY LETTERS, Issue 1 2004Christopher M. Browngardt Abstract Glucosyltransferases (Gtfs) and fructosyltransferase (Ftf), and the exopolysaccharides they produce, facilitate bacterial adherence and biofilm formation, and enhance the virulence of Streptococcus mutans. In this study, we used continuous chemostat cultures and reporter gene fusions to study the expression of ftf and gtfBC in response to carbohydrate availability and pH, and to asses the role of a protein similar to catabolite control protein A (CcpA), RegM, in regulation of these genes. Expression of ftf was efficient at pH 7.0 and 6.0, but was repressed at pH 5.0 under glucose-excess conditions. At pH 7.0, ftf expression was 5-fold lower under glucose-limiting conditions than in cells growing with an excess of glucose. Expression of gtfBC was also sensitive, albeit to a lesser extent, to pH and glucose availability. Inactivation of regM resulted in decreases of as much as 10-fold in both ftf and gtfBC expression, depending on growth conditions. These findings reinforce the importance of pH and carbohydrate availability for expression of two primary virulence attributes of S. mutans and reveal a critical role for RegM in regulation of expression of both gtfBC and ftf. [source] Green fluorescent protein , a bright idea for the study of bacterial protein localizationFEMS MICROBIOLOGY LETTERS, Issue 1 2001Gregory J Phillips Abstract Use of the green fluorescent protein (GFP) of Aequorea victoria as a reporter for protein and DNA localization has provided sensitive, new approaches for studying the organization of the bacterial cell, leading to new insights into diverse cellular processes. GFP has many characteristics that make it useful for localization studies in bacteria, primarily its ability to fluoresce when fused to target polypeptides without the addition of exogenously added substrates. As an alternative to immunofluorescence microscopy, the expression of gfp gene fusions has been used to probe the function of cellular components fundamental for DNA replication, translation, protein export, and signal transduction, that heretofore have been difficult to study in living cells. Moreover, protein and DNA localization can now be monitored in real time, revealing that several proteins important for cell division, development and sporulation are dynamically localized throughout the cell cycle. The use of additional GFP variants that permit the labeling of multiple components within the same cell, and the use of GFP for genetic screens, should continue to make this a valuable tool for addressing complex questions about the bacterial cell. [source] Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines,GENES, CHROMOSOMES AND CANCER, Issue 3 2010Turid Knutsen In defining the genetic profiles in cancer, cytogenetically aberrant cell lines derived from primary tumors are important tools for the study of carcinogenesis. Here, we present the results of a comprehensive investigation of 15 established colorectal cancer cell lines using spectral karyotyping (SKY), fluorescence in situ hybridization, and comparative genomic hybridization (CGH). Detailed karyotypic analysis by SKY on five of the lines (P53HCT116, T84, NCI-H508, NCI-H716, and SK-CO-1) is described here for the first time. The five lines with karyotypes in the diploid range and that are characterized by defects in DNA mismatch repair had a mean of 4.8 chromosomal abnormalities per line, whereas the 10 aneuploid lines exhibited complex karyotypes and a mean of 30 chromosomal abnormalities. Of the 150 clonal translocations, only eight were balanced and none were recurrent among the lines. We also reviewed the karyotypes of 345 cases of adenocarcinoma of the large intestine listed in the Mitelman Database of Chromosome Aberrations in Cancer. The types of abnormalities observed in the cell lines reflected those seen in primary tumors: there were no recurrent translocations in either tumors or cell lines; isochromosomes were the most common recurrent abnormalities; and breakpoints occurred most frequently at the centromeric/pericentromeric and telomere regions. Of the genomic imbalances detected by array CGH, 87% correlated with chromosome aberrations observed in the SKY studies. The fact that chromosome abnormalities predominantly result in copy number changes rather than specific chromosome or gene fusions suggests that this may be the major mechanism leading to carcinogenesis in colorectal cancer. Published 2009 Wiley-Liss, Inc. [source] EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytomaGENES, CHROMOSOMES AND CANCER, Issue 12 2007Cristina R. Antonescu The molecular hallmark of angiomatoid fibrous histiocytoma (AFH) is not well defined, with only six cases with specific gene fusions reported to date, consisting of either FUS-ATF1 or EWSR1-ATF1. To address this, we investigated the presence of FUS-ATF1, EWSR1-ATF1, and the highly related EWSR1-CREB1 fusion in a group of nine AFHs. All cases were subjected to RT-PCR for EWSR1-ATF1 and EWSR1-CREB1. FISH for EWSR1 and FUS rearrangements was performed in most cases. Transcriptional profiling was performed in three tumors and their gene expression was compared to five clear cell sarcomas expressing either the EWSR1-ATF1 or EWSR1-CREB1 fusion. By RT-PCR, eight out of nine tumors showed the presence of the EWSR1-CREB1 fusion, while one had an EWSR1-ATF1 transcript. FISH showed evidence of EWSR1 rearrangement in seven out of eight cases. Karyotypic analysis performed in one tumor showed a t(2;22)(q33;q12). High transcript levels were noted for TFE3 in AFH tumors, while overexpression of genes involved in melanogenesis, such as MITF, GP100, and MET was noted in somatic clear cell sarcomas. We report for the first time the presence of EWSR1-CREB1 in AFH, which now appears to be the most frequent gene fusion in this tumor. EWSR1-CREB1 is a novel translocation recently described in clear cell sarcoma of the GI tract. EWSR1-ATF1, identified in some AFH cases, is the most common genetic abnormality in soft tissue clear cell sarcoma. Thus, identical fusions involving ATF1 and CREB1 are found in two distinct sarcomas, which may be able to transform two different types of mesenchymal precursor cells, unlike most other sarcoma gene fusions. © 2007 Wiley-Liss, Inc. [source] GeneChip® expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genesMOLECULAR MICROBIOLOGY, Issue 5 2002Urs A. Ochsner Summary Upon iron restriction, the opportunistic pathogen Pseudomonas aeruginosa produces various virulence factors, including siderophores, exotoxin, proteases and haemolysin. The ferric uptake regulator (Fur) plays a central role in this response and also controls other regulatory genes, such as pvdS, which encodes an alternative sigma factor. This circuit leads to a hierarchical cascade of direct and indirect iron regulation. We used the GeneChip® to analyse the global gene expression profiles in response to iron. In iron-starved cells, the expression of 118 genes was increased at least fivefold compared with that in iron-replete cells, whereas the expression of 87 genes was decreased at least fivefold. The GeneChip® data correlated well with results obtained using individual lacZ gene fusions. Strong iron regulation was observed for previously identified genes involved in biosynthesis or uptake of the siderophores pyoverdine and pyochelin, utilization of heterologous siderophores and haem and ferrous iron transport. A low-iron milieu led to increased expression of the genes encoding TonB, alkaline protease, PrpL protease, exotoxin A, as well as fumarase C, Mn-dependent superoxide dismutase SodA, a ferredoxin and ferredoxin reductase and several oxidoreductases and dehydrogenases. Iron-controlled regulatory genes included seven alternative sigma factors and five other transcriptional regulators. Roughly 20% of the iron-regulated genes encoded proteins of unknown function and lacked any conclusive homologies. Under low-iron conditions, expression of 26 genes or operons was reduced in a ,pvdS mutant compared with wild type, including numerous novel pyoverdine biosynthetic genes. The GeneChip® proved to be a very useful tool for rapid gene expression analysis and identification of novel genes controlled by Fur or PvdS. [source] Transcription factor families inferred from genome sequences of photosynthetic stramenopilesNEW PHYTOLOGIST, Issue 1 2010Edda Rayko Summary ,By comparative analyses we identify lineage-specific diversity in transcription factors (TFs) from stramenopile (or heterokont) genome sequences. We compared a pennate (Phaeodactylum tricornutum) and a centric diatom (Thalassiosira pseudonana) with those of other stramenopiles (oomycetes, Pelagophyceae, and Phaeophyceae (Ectocarpus siliculosus)) as well as to that of Emiliania huxleyi, a haptophyte that is evolutionarily related to the stramenopiles. ,We provide a detailed description of diatom TF complements and report numerous peculiarities: in both diatoms, the heat shock factor (HSF) family is overamplified and constitutes the most abundant class of TFs; Myb and C2H2-type zinc finger TFs are the two most abundant TF families encoded in all the other stramenopile genomes investigated; the presence of diatom and lineage-specific gene fusions, in particular a class of putative photoreceptors with light-sensitive Per-Arnt-Sim (PAS) and DNA-binding (basic-leucine zipper, bZIP) domains and an HSF-AP2 domain fusion. ,Expression data analysis shows that many of the TFs studied are transcribed and may be involved in specific responses to environmental stimuli. ,Evolutionary and functional relevance of these observations are discussed. [source] Proliferative and apoptotic differences between alveolar rhabdomyosarcoma subtypes: A comparative study of tumors containing PAX3-FKHR or PAX7-FKHR gene fusionsPEDIATRIC BLOOD & CANCER, Issue 2 2001Margaret H. Collins MD Abstract Background Most alveolar rhabdomyosarcomas (ARMS) have chromosome translocations and resultant gene fusion products. The more common translocation fuses the PAX3 and FKHR genes; patients who have PAX3-FKHR-positive ARMS have reduced event-free survival compared to patients with ARMS containing the less common translocation that fuses the PAX7 and FKHR genes. Procedure We examined histology, immunohistochemical markers of differentiation, and cell cycle characteristics of a panel of ARMS containing either PAX3-FKHR or PAX7-FKHR transcript to determine if these features differ between the ARMS subsets. Results Cell cycle parameters varied significantly: the number of nuclei that stained with either an immunohistochemical marker of proliferation (MIB1), or a TUNEL-based assay for apoptosis was significantly greater in tumors that expressed PAX3-FKHR compared to tumors that expressed PAX7-FKHR transcript. Conclusions We conclude that compared to PAX7-FKHR-containing tumors, ARMS that contain PAX3-FKHR transcript have (1) increased cell proliferation, consistent with greater loss of cell cycle regulation, and (2) apoptosis that is increased but insufficient to prevent tumor formation. More marked cell cycle dysregulation may contribute to poorer prognosis for patients with ARMS that have PAX3-FKHR fusion. Med Pediatr Oncol 2001;37:83,89. © 2001 Wiley-Liss, Inc. [source] Growth-related variations in the Bacillus cereus secretomePROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 10 2007Nathalie Gilois Abstract Using 2-DE, transcriptional gene fusions and cell cytotoxicity assays, we followed changes in the Bacillus cereus strain ATCC14579 secretome, gene expression and culture supernatant cytotoxicity from the end of the vegetative phase up to 5,h after entry into the stationary phase. The concentration of each of the 22 proteins in the culture supernatant was determined at various times. In addition, the stability of the proteins was studied. Fifteen of these proteins, including 14 members of the virulence regulon PlcR, were known or predicted to be secreted. All of the secreted proteins reached a maximum concentration during early stationary phase, but there were significant differences in the kinetics of their concentrations. The time courses of protein concentrations were in agreement with gene expression data, except for cytotoxin CytK, which was unstable, and for the metalloprotease InhA1. Supernatant cytoxicity also peaked in early stationary phase, and the kinetics of cytotoxicity paralleled the time course of concentration of the PlcR-controlled toxin, CytK. Our concomitant study of the time course of protein concentrations, gene expression and supernatant cytotoxicity reveals that the pathogenic potential of B. cereus peaks during the transition state. It also suggests that there is diversity in the regulation of gene expression within the PlcR regulon. [source] Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesisTHE PLANT JOURNAL, Issue 1 2008Gyöngyi Székely Summary ,-1-pyrroline-5-carboxylate synthetase enzymes, which catalyse the rate-limiting step of proline biosynthesis, are encoded by two closely related P5CS genes in Arabidopsis. Transcription of the P5CS genes is differentially regulated by drought, salinity and abscisic acid, suggesting that these genes play specific roles in the control of proline biosynthesis. Here we describe the genetic characterization of p5cs insertion mutants, which indicates that P5CS1 is required for proline accumulation under osmotic stress. Knockout mutations of P5CS1 result in the reduction of stress-induced proline synthesis, hypersensitivity to salt stress, and accumulation of reactive oxygen species. By contrast, p5cs2 mutations cause embryo abortion during late stages of seed development. The desiccation sensitivity of p5cs2 embryos does not reflect differential control of transcription, as both P5CS mRNAs are detectable throughout embryonic development. Cellular localization studies with P5CS,GFP gene fusions indicate that P5CS1 is sequestered into subcellular bodies in embryonic cells, where P5CS2 is dominantly cytoplasmic. Although proline feeding rescues the viability of mutant embryos, p5cs2 seedlings undergo aberrant development and fail to produce fertile plants even when grown on proline. In seedlings, specific expression of P5CS2,GFP is seen in leaf primordia where P5CS1,GFP levels are very low, and P5CS2,GFP also shows a distinct cell-type-specific and subcellular localization pattern compared to P5CS1,GFP in root tips, leaves and flower organs. These data demonstrate that the Arabidopsis P5CS enzymes perform non-redundant functions, and that P5CS1 is insufficient for compensation of developmental defects caused by inactivation of P5CS2. [source] Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the BrassicaceaeTHE PLANT JOURNAL, Issue 1 2005Andreas Wachter Summary The genome of Arabidopsis thaliana reveals that in this species the enzymes of glutathione biosynthesis, GSH1 and GSH2, are encoded by single genes. In silico analysis predicts proteins with putative plastidic transit peptides (TP) for both genes, but this has not been experimentally verified. Here we report a detailed analysis of the 5,ends of GSH1 and GSH2 mRNAs and demonstrate the subcellular targeting of the proteins encoded by different transcript types. GSH1 transcript analysis revealed two mRNA populations with short and long 5,-UTRs, respectively, both including the entire TP sequence. The ratio of long/total GSH1 transcripts was subject to developmental regulation. Transient transformation experiments with reporter gene fusions, bearing long or short 5,-UTRs, indicated an exclusive targeting of GSH1 to the plastids. Corroborating these results, endogenous and ectopically expressed GSH1 proteins were always present as a single polypeptide species with the size expected for correctly processed GSH1. Finally, the plastidic GSH1 localization was confirmed by immunocytochemistry. Similar to GSH1, multiple transcript populations were found for GSH2. However, here the prevalent shorter transcripts lacked a complete TP sequence. As expected, the large (but less abundant) transcript encoded a plastidic GSH2 protein, whereas GSH2 synthesized from the shorter transcript was targeted to the cytosol. The implications of the results for the compartmentation and regulation of GSH synthesis are discussed. [source] The effect of intron location on intron-mediated enhancement of gene expression in ArabidopsisTHE PLANT JOURNAL, Issue 5 2004Alan B. Rose Summary Introns are often required for full expression of genes in organisms as diverse as plants, insects, nematodes, yeast, and mammals. To explore the potential mechanisms of intron-mediated enhancement in Arabidopsis thaliana, the effect of varying the position of an intron was determined using a series of reporter gene fusions between TRYPTOPHAN BIOSYNTHESIS1 (TRP1) and GUS. Two introns that differ in the degree to which they stimulate expression were individually tested at six locations within coding sequences and two positions in the 3,-UTR. The ability of the first introns from both the TRP1 and POLYUBIQUITIN10 (UBQ10) genes to elevate mRNA accumulation in transgenic plants was found to decline with distance from the promoter, despite their being efficiently spliced from all coding sequence locations. Neither intron significantly enhanced mRNA accumulation when positioned 1.1 kb or more from the start of transcription. In addition, measurements of GUS enzyme activity revealed that both introns at all locations elevated GUS activity more than they enhanced mRNA accumulation. The stimulation mediated by two of four other introns tested at the position nearest the promoter was also greater at the level of GUS activity than mRNA accumulation. These findings support a model in which introns increase transcription and promote translation by two distinct mechanisms. [source] |