Home About us Contact | |||
Gene Expression Program (gene + expression_program)
Selected AbstractsRequirement of phospholipase C-,2 (PLC,2) for Dectin-1-induced antigen presentation and induction of TH1/TH17 polarizationEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2009Ilaria Tassi Abstract DC recognize microbial components through an array of receptors known as PRR. PRR initiate intracellular signals, which engender DC with the capacity to stimulate T-cell responses. Dectin-1 is a PRR that recognizes ,-glucan, a major constituent of many fungi's outer cell wall. Here we show that Dectin-1 activates DC through phospholipase (PLC),2 signaling. PLC,2-deficient DC were unable to expand antigen-specific T cells and induce TH1 and TH17 differentiation in response to ,-glucan. Mechanistically, PLC,2-deficiency impaired the capacity of DC to secrete polarizing cytokines following exposure to ,-glucan. Dectin-1 required PLC,2 to activate MAPK, AP-1 and NF-,B, which induce cytokine gene expression. Moreover, PLC,2 controlled Dectin-1-mediated NFAT activation and induction of NFAT-dependent genes such as IL-2, cyclooxigenase-2 and Egr transcription factors. We conclude that PLC,2 is a crucial signaling mediator that modifies DC gene expression program to activate DC responses to ,-glucan-containing pathogens. [source] Molecular regulation of androgen action in prostate cancer,JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2006Scott M. Dehm Abstract Androgens are critical regulators of prostate differentiation and function, as well as prostate cancer growth and survival. Therefore, androgen ablation is the preferred systemic treatment for disseminated prostate cancer. Androgen action is exerted in target tissues via binding the androgen receptor (AR), a nuclear receptor transcription factor. Historically, the gene expression program mediated by the AR has been poorly understood. However, recent gene expression profiling and more traditional single-gene characterization studies have revealed many androgen-regulated genes that are important mediators of androgen action in both normal and malignant prostate tissue. This review will focus on the androgen-regulated gene expression program, and examine how recently identified androgen-regulated genes are likely to contribute to the development and progression of prostate cancer. We will also summarize several recent studies that have attempted to unravel how these genes are deregulated in androgen depletion independent prostate cancer. J. Cell. Biochem. 99: 333,344, 2006. © 2006 Wiley-Liss, Inc. [source] Molecular framework for response to imatinib mesylate in systemic sclerosis,ARTHRITIS & RHEUMATISM, Issue 2 2009Lorinda Chung Systemic sclerosis (SSc) is an autoimmune disease in which the tyrosine kinases platelet-derived growth factor receptor (PDGFR) and Abl are hypothesized to contribute to the fibrosis and vasculopathy of the skin and internal organs. Herein we describe 2 patients with early diffuse cutaneous SSc (dcSSc) who experienced reductions in cutaneous sclerosis in response to therapy with the tyrosine kinase inhibitor imatinib mesylate. Immunohistochemical analyses of skin biopsy specimens demonstrated reductions of phosphorylated PDGFR, and Abl with imatinib therapy. By gene expression profiling, an imatinib-responsive signature specific to dcSSc was identified (P < 10,8). The response of these patients and the findings of the analyses suggest that PDGFR, and Abl play critical, synergistic roles in the pathogenesis of SSc, and that imatinib targets a gene expression program that is frequently dysregulated in dcSSc. [source] Regulation of gene expression in osteoblastsBIOFACTORS, Issue 1 2010Eric D. Jensen Abstract In recent years, much progress has been made in understanding the factors that regulate the gene expression program that underlies the induction, proliferation, differentiation, and maturation of osteoblasts. A large and growing number of transcription factors make important contributions to the precise control of osteoblast formation and function. It has become increasingly clear that these diverse transcription factors and the signals that regulate their activity cannot be viewed as discrete, separate signaling pathways. Rather, they form a highly interconnected, cooperative network that permits gene expression to be closely regulated. There has also been a substantial increase in our understanding of the mechanistic control of gene expression by cofactors such as acetyltransferases and histone deacetylases. The purpose of this review is to highlight recent progress in understanding the major transcription factors and epigenetic coregulators, including histone deacetylases and microRNAs, involved in osteoblastogenesis and the mechanisms that determine their functions as regulators of gene expression. [source] Expression of Sox11 in adult neurogenic niches suggests a stage-specific role in adult neurogenesisEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2009Anja Haslinger Abstract In the mammalian brain, neural stem and progenitor cells in the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus generate new neurons throughout adulthood. The generation of new functional neurons is a complex process that is tightly controlled by extrinsic signals and that is characterized by stage-specific gene expression programs and cell biological processes. The transcription factors regulating such stage-specific developmental steps in adult neurogenesis are largely unknown. Here we report that Sox11, a member of the group C Sox transcription factor family, is prominently expressed in the neurogenic areas of the adult brain. Further analysis revealed that Sox11 expression is strictly confined to doublecortin-expressing neuronally committed precursors and immature neurons but that Sox11 is not expressed in non-committed Sox2-expressing precursor cells and mature neurons of the adult neurogenic lineage. Finally, overexpression of Sox11 promotes the generation of doublecortin-positive immature neurons from adult neural stem cells in vitro. These data indicate that Sox11 is involved in the transcriptional regulation of specific gene expression programs in adult neurogenesis at the stage of the immature neuron. [source] Transcriptional regulatory cascades controlling plasma cell differentiationIMMUNOLOGICAL REVIEWS, Issue 1 2003Kuo-I Lin Summary:, Plasma cells are the terminally differentiated effector cells of the B lymphocyte lineage. Recently, studies using genetically altered mice and analyses of global gene expression programs have significantly expanded our understanding of the molecular mechanisms regulating plasmacytic differentiation. Specific molecular components of a multistep cascade of transcriptional regulators have been identified. Furthermore, two transcriptional regulators, X box binding protein-1 (XBP-1) and B lymphocyte induced maturation protein-1 (Blimp-1), have been shown to be necessary for plasmacytic differentiation. In addition to providing a mechanistic basis for the induction of genes necessary for immunoglobulin secretion, cessation of cell cycle and other phenotypic changes characteristic of terminally differentiated plasma cells, these studies have led to the important concept that plasmacytic differentiation involves repression of regulators, such as Bcl-6 and Pax5, that are necessary to maintain the earlier developmental phenotype of activated, germinal center B cells. This review describes our current understanding of the transcriptional cascades regulating terminal differentiation of B cells. [source] Regulation of retinal ganglion cell gene expression by bHLH transcription factors in the developing and ischemic retinasACTA OPHTHALMOLOGICA, Issue 2009JM MATTER Purpose The loss of retinal ganglion cells (RGC) in the glaucomatous retina exhibits similarities to the pattern of neuronal degeneration detected after experimental ischemia. However, a short episode of retinal ischemia does not provoke damage but rather triggers an endogenous form of neuroprotection. HIFs are bHLH proteins that regulate hypoxic response in ischemic retinas and they are involved in neuroprotection. Hypoxic environments also occur in the developing embryo and create specific niches controlling cell differentiation. Genetic analyses of HIF functions have revealed the importance of oxygen as a key regulator of ontogeny. We have compared the transcriptomes of RGCs in ischemic versus developing retinas. Methods Genome-wide screens were conducted to identify genes which are expressed in newborn RGCs and growing optic nerve axons and which are up- or down-regulated after venal occlusion by photodynamic thrombosis in the rat retinas. Results Atoh7 is a bHLH protein which is central to the transcriptional network regulating the production of RGCs. Among the targets of Atoh7 there are genes involved in the general metabolism and energy supply , e.g., alpha-enolase (ENO1), glucose-6 -phosphate isomerase (GPI). These glycolytic enzymes are also targets of HIFs and they are upregulated during hypoxia. To investigate the linkage of glycolysis and mitochondrial activity in RGCs, we monitored by confocal time-lapse imaging the dynamic distribution of mitochondria in the cell bodies and axons of RGCs that express HIF/Atoh7 targets in developing and ischemic retinas. Conclusion Some gene expression programs involved in differentiating RGCs might be reinitiated in neuroprotection. [source] |