Gene Expression Profiles (gene + expression_profile)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Gene Expression Profiles

  • differential gene expression profile
  • global gene expression profile


  • Selected Abstracts


    Gene Expression Profiles of Intracellular and Membrane Progesterone Receptor Isoforms in the Mediobasal Hypothalamus During Pro-Oestrus

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 12 2009
    B. Liu
    Progesterone action is mediated by its binding to specific receptors. Two progesterone receptor (PR) isoforms (PRA and PRB), three membrane progesterone receptor (mPR) subtypes (mPR,, mPR, and mPR,) and at least one progesterone membrane-binding protein [PR membrane component 1 (PRmc1)] have been identified in reproductive tissues and brain of various species. In the present study, we examined gene expression patterns for PR isoforms, mPR subtypes and PRmc1 in the rat mediobasal hypothalamus (MBH) during pro-oestrus. The mRNA level for each receptor subtype was quantified by a real-time reverse transcriptase-polymerase chain reaction (RT-PCR) at the time points: 13.00 h on dioestrous day 2; 09.00, 13.00, 17.00 and 22.00 h on pro-oestrus; and 13.00 h on oestrus. For PR, one primer set amplified PRA+PRB, whereas a second primer set amplified PRB. As expected, PRA+PRB mRNA expression was greater than PRB in MBH tissue. PRB mRNA levels increased throughout the day on pro-oestrus, with the highest levels being observed at 17.00 h. PRB mRNA levels in the MBH were increased by 2.4- and 3.0-fold at 13.00 and 17.00 h, respectively, on pro-oestrus compared to 13.00 h on dioestrous day 2. There were differential mRNA expression levels for mPRs and PRmc1 in the MBH, with the highest expression for PRmc1 and the lowest for mPR,. The mPR, mRNA contents at 13.00 and 17.00 h on pro-oestrus were increased by 1.5-fold compared to that at 13.00 h on dioestrous day 2. The mPR, mRNA levels at 13.00 and 17.00 h on pro-oestrus were 2.5- and 2.4-fold higher compared to that at 13.00 h on dioestrous day 2, respectively. PRA+PRB, mPR, and PRmc1 mRNA levels did not vary on pro-oestrus. These findings suggest that the higher expression of PRB, mPR, and mPR, in the MBH on pro-oestrous afternoon may influence both genomic and nongenomic mechanisms of progesterone action during the critical pre-ovulatory period. [source]


    Bayesian State Space Models for Inferring and Predicting Temporal Gene Expression Profiles

    BIOMETRICAL JOURNAL, Issue 6 2007
    Yulan Liang
    Abstract Prediction of gene dynamic behavior is a challenging and important problem in genomic research while estimating the temporal correlations and non-stationarity are the keys in this process. Unfortunately, most existing techniques used for the inclusion of the temporal correlations treat the time course as evenly distributed time intervals and use stationary models with time-invariant settings. This is an assumption that is often violated in microarray time course data since the time course expression data are at unequal time points, where the difference in sampling times varies from minutes to days. Furthermore, the unevenly spaced short time courses with sudden changes make the prediction of genetic dynamics difficult. In this paper, we develop two types of Bayesian state space models to tackle this challenge for inferring and predicting the gene expression profiles associated with diseases. In the univariate time-varying Bayesian state space models we treat both the stochastic transition matrix and the observation matrix time-variant with linear setting and point out that this can easily be extended to nonlinear setting. In the multivariate Bayesian state space model we include temporal correlation structures in the covariance matrix estimations. In both models, the unevenly spaced short time courses with unseen time points are treated as hidden state variables. Bayesian approaches with various prior and hyper-prior models with MCMC algorithms are used to estimate the model parameters and hidden variables. We apply our models to multiple tissue polygenetic affymetrix data sets. Results show that the predictions of the genomic dynamic behavior can be well captured by the proposed models. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Gene expression profile of transgenic mouse kidney reveals pathogenesis of hepatitis B virus associated nephropathy,

    JOURNAL OF MEDICAL VIROLOGY, Issue 5 2006
    J. Ren
    Abstract Hepatitis B virus (HBV)-associated nephritis has been reported worldwide. Immune complex deposition has been accepted as its pathogenesis, although the association between the presence of local HBV DNA and viral antigen and the development of nephritis remains controversial. To understand better the roles played by HBV protein expression in the kidney, the global gene expression profile was studied in the kidney tissue of a lineage of HBV transgenic mouse (#59). The mice expressed HBsAg in serum, and HBsAg and HBcAg in liver and kidney, but without virus replication. Full-length HBV genome (adr subtype, C genotype) isolated from a chronic HBV carrier was used to establish the transgenic mice #59. Similarly manipulated mice that did not express HBV viral antigens served as controls. Southern blotting, hybridization with HBV probe, and immuno-histochemical staining were used to study HBV gene expression. mRNA extracted from the kidney tissue was analyzed using Affymetrix microarrays. HBsAg and HBcAg were located mainly in the cytoplasm of tubular epithelium. Altogether 520 genes were "up-regulated" more than twofold and 76 genes "down-regulated" more than twofold in the kidney. The complement activation, blood coagulation, and acute-phase response genes were markedly "up-regulated". Compared to the controls, the level of serum C3 protein was decreased in #59 mice, while the level of C3 protein from kidney extract was increased. Results indicate that expression of HBsAg and HBcAg in tubular epithelial cells of the kidney per se can up-regulate complement-mediated inflammatory gene pathways, in addition to immune complex formation. J. Med. Virol. 78:551,560, 2006. © 2006 Wiley-Liss, Inc. [source]


    Effect of vertebroplasty filler materials on viability and gene expression of human nucleus pulposus cells

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2008
    Áron Lazáry
    Abstract Consequences of intradiscal cement leakage,often occurring after vertebral cement augmentation for the treatment of vertebral compression fractures,are still unknown. In this study, we have investigated the influences of vertebroplasty filler materials (polymethylmethacrylate-, calcium phosphate- and calcium sulfate-based bone cement) on isolated nucleus pulposus cells. Cell viability of cultured human nucleus pulposus cells were measured after treatment with vertebroplasty filler materials. Gene expression profile of selected genes was determined with quantitative real-time PCR. The widely used polymethylmethacrylate and calcium phosphate cement significantly decreased cell number in a dose- and time-dependent manner while calcium sulfate cement affected cell viability less. Expression of genes involved in matrix metabolism of nucleus pulposus,aggrecan, collagens, small proteoglycans,as well as important transcription factors have also significantly changed due to treatment (e.g., 2.5-fold decrease in aggrecan expression was determined in cultures due to polymethylmethacrylate treatment). Our results suggest that vertebroplasty filler materials,depending on the type of applied material,can accelerate the degeneration of nucleus pulposus cells resulting in a less flexible disc in case of intradiscal cement leakage. This process may increase the risk of a subsequent new vertebral fracture, the main complication of vertebral augmentation. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:601,607, 2008 [source]


    Gene expression profile of Huh-7 cells expressing hepatitis C virus genotype 1b or 3a core proteins

    LIVER INTERNATIONAL, Issue 5 2009
    Valerio Pazienza
    Abstract Background: The liver disease expression in chronic hepatitis C patients is variable and may partially depend on the sequence of the infecting viral genotype. Aim: To identify some hepatitis C virus (HCV) genotype-specific virus,host interactions potentially leading to clinically significant consequences. Methods: We compared the gene expression profile of Huh-7 cells transiently expressing the core protein of HCV genotype 1b and 3a using microarray technology. Results: Thirty-two genes were overexpressed in Huh-7 transfected with the HCV genotype 1b core protein and 57 genes in cells transfected with the genotype 3a core protein. On the other hand, we found 20 genes downregulated by core 1b and 31 genes by core 3a. These included genes involved in lipid transport and metabolism, cell cycle, immune response and insulin signalling. Conclusion: The expression of HCV core proteins of different genotypes leads to a specific gene expression profile. This may account for the variable disease expression associated with HCV infection. [source]


    Gene expression profile in the salivary glands of primary Sjögren's syndrome patients before and after treatment with rituximab

    ARTHRITIS & RHEUMATISM, Issue 8 2010
    Valérie Devauchelle-Pensec
    Objective Primary Sjögren's syndrome (SS) is a complex disorder, in part due to B cell abnormalities. Although anti,B cell therapy is promising in primary SS, no treatment has yet been demonstrated to modify the disease course. This open-label study was undertaken to evaluate the efficacy of rituximab in primary SS and to investigate whether expression of specific genes is associated with efficacy of this treatment. Methods Fifteen patients with primary SS were treated in an open-label trial. Salivary gland biopsy specimens were obtained, and total RNA was extracted and amplified. Microarray analysis with the Affymetrix Human Genome U133 Plus 2.0 Array was used to analyze >54,000 transcripts, and potential pathways were identified. Results With gene expression data obtained before treatment, patients could be correctly classified in terms of whether they would be responders or nonresponders to rituximab. Gene pathway analysis demonstrated that the B cell signaling pathway was the most profoundly differentially expressed before treatment in the responders compared with nonresponders. Subclassification of patients based on the level of infiltration also demonstrated differential expression of genes belonging to the interferon (IFN) pathway between responders and nonresponders. Furthermore, unsupervised analysis based on gene expression modification before and after treatment allowed identification of 8 genes that were differentially expressed between responders and nonresponders, with the difference remaining significant after Bonferroni correction. Conclusion Our results demonstrate the ability to elaborate a set of genes predictive of rituximab efficacy and highlight the importance of studying the differential expression of B cell and IFN pathway signaling molecules in relation to the response to anti-CD20 treatment. A randomized controlled study is currently ongoing to confirm these results. [source]


    Gene expression profile in a case of primary cutaneous CD30-negative large T-cell lymphoma with a blastic phenotype

    CLINICAL & EXPERIMENTAL DERMATOLOGY, Issue 2 2001
    T. Murakami
    A 65-year-old Japanese woman presented with disseminated erythematous patches, plaques, and nodules on the trunk and limbs. Histological examination showed diffuse and dense infiltrates located in the dermis and subcutis, composed of large pleomorphic T lymphocytes. Immunohistochemically, neoplastic cells were positive for blastic T-cell markers, but negative for CD30 (Ki-1) antigen. Based on the clinicopathological findings, a diagnosis of primary cutaneous large T-cell lymphoma was made. Despite systemic chemotherapy, the patient died 7 months after diagnosis. Gene expression profiling using complementary DNA microarrays indicated significantly increased expression of an apoptosis-inhibitory protein and certain cyokines and cytokine receptors (e.g. MCP-1, MCP-2, IP-10, and IL-2R,) in the tumour-indurated skin. Comprehensive gene expression patterning in additional cases may provide useful information regarding the biological and clinical behaviour of aggressive cutaneous lymphomas such as CD30-negative large T-cell lymphoma. [source]


    CD146+ T lymphocytes are increased in both the peripheral circulation and in the synovial effusions of patients with various musculoskeletal diseases and display pro-inflammatory gene profiles,,

    CYTOMETRY, Issue 2 2010
    Pradeep Kumar Dagur
    Abstract Twenty-eight synovial effusions (SE) were obtained from 24 patients, paired samples of peripheral blood (PB) from 10 of these patients, and PB from 36 healthy individuals for analysis of CD146 on T-lymphocytes by flow cytometry. CD146+ or CD146, T-lymphocytes were sorted from three SE to study gene expression profiles and selected genes revalidated using QPCR assays. We found more CD3+CD146+ and CD4+CD146+ T-lymphocytes in PB from patients compared with PB of healthy individuals (4.71% ± 2.48% vs. 2.53% ± 1.08%, P = 0.028) and (6.29% ± 2.74% vs. 2.41% ± 0.96%, P = 0.0017), respectively, whereas CD8+CD146+ T-lymphocytes were not significantly different (2.55% ± 1.65% vs. 3.18% ± 2.59%, P = 0.5008). SE displayed CD146 staining on 16.32% ± 6.06% of CD3+ cells. This expression was skewed toward CD4+ T-lymphocytes, with CD146 present on 24.06% ± 8.20% of the CD4+ T-lymphocytes compared with 6.19% ± 5.22% of the CD8+ T-lymphocytes. CD146 on CD3+, CD4+ and CD8+ T-lymphocytes in SE was significantly higher compared with PB in patients (P < 0.0001, P < 0.0001 and P = 0.0036, respectively). Gene expression profiles of sorted CD146+CD4+CD3+ vs. CD146,CD4+CD3+ T-lymphocytes (n = 2) and CD2+CD146+ vs. CD2+CD 146, (n = 1) from SE, displayed increased CD146, LAIR2, CXCL13, CD109, IL6ST, IL6R, TNFRsf18, and TNFRsf4 genes, whereas decreased CCR7, CCL5, and cytotoxicity-associated genes including granzymes b, h, and k, perforin were found with the CD146, T-lymphocytes. By QPCR higher mRNA expression of CXCL13, CD146 and CD109 was also noted in the CD146+ subset, compared with the CD146, subset, in PB of healthy individuals and in PB and SE from patients. Our study establishes increased CD146+ T-lymphocytes in diseases with joint effusions, and demonstrates pro-inflammatory gene profiles in these cells. Published 2009 Wiley-Liss, Inc. [source]


    Gene expression profiles of lens regeneration and development in Xenopus laevis

    DEVELOPMENTAL DYNAMICS, Issue 9 2009
    Erica L. Malloch
    Abstract Seven hundred and thirty-four unique genes were recovered from a cDNA library enriched for genes up-regulated during the process of lens regeneration in the frog Xenopus laevis. The sequences represent transcription factors, proteins involved in RNA synthesis/processing, components of prominent cell signaling pathways, genes involved in protein processing, transport, and degradation (e.g., the ubiquitin/proteasome pathway), matrix metalloproteases (MMPs), as well as many other proteins. The findings implicate specific signal transduction pathways in the process of lens regeneration, including the FGF, TGF-beta, MAPK, Retinoic acid, Wnt, and hedgehog signaling pathways, which are known to play important roles in eye/lens development and regeneration in various systems. In situ hybridization revealed that the majority of genes recovered are expressed during embryogenesis, including in eye tissues. Several novel genes specifically expressed in lenses were identified. The suite of genes was compared to those up-regulated in other regenerating tissues/organisms, and a small degree of overlap was detected. Developmental Dynamics 238:2340,2356, 2009. © 2009 Wiley-Liss, Inc. [source]


    Alterations in gene expression profiles and the DNA-damage response in ionizing radiation-exposed TK6 cells,,

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2-3 2005
    Gregory S. Akerman
    Abstract Identifying genes that are differentially expressed in response to DNA damage may help elucidate markers for genetic damage and provide insight into the cellular responses to specific genotoxic agents. We utilized cDNA microarrays to develop gene expression profiles for ionizing radiation-exposed human lymphoblastoid TK6 cells. In order to relate changes in the expression profiles to biological responses, the effects of ionizing radiation on cell viability, cloning efficiency, and micronucleus formation were measured. TK6 cells were exposed to 0.5, 1, 5, 10, and 20 Gy ionizing radiation and cultured for 4 or 24 hr. A significant (P < 0.0001) decrease in cloning efficiency was observed at all doses at 4 and 24 hr after exposure. Flow cytometry revealed significant decreases in cell viability at 24 hr in cells exposed to 5 (P < 0.001), 10 (P < 0.0001), and 20 Gy (P < 0.0001). An increase in micronucleus frequency occurred at both 4 and 24 hr at 0.5 and 1 Gy; however, insufficient binucleated cells were present for analysis at the higher doses. Gene expression profiles were developed from mRNA isolated from cells exposed to 5, 10, and 20 Gy using a 350 gene human cDNA array platform. Overall, more genes were differentially expressed at 24-hr than at the 4-hr time point. The genes upregulated (> 1.5-fold) or downregulated (< 0.67-fold) at 4 hr were those primarily involved in the cessation of the cell cycle, cellular detoxification pathways, DNA repair, and apoptosis. At 24 hr, glutathione-associated genes were induced in addition to genes involved in apoptosis. Genes involved in cell cycle progression and mitosis were downregulated at 24 hr. Real-time quantitative PCR was used to confirm the microarray results and to evaluate expression levels of selected genes at the low doses (0.5 and 1.0 Gy). The expression profiles reflect the cellular and molecular responses to ionizing radiation related to the recognition of DNA damage, a halt in progression through the cell cycle, activation of DNA-repair pathways, and the promotion of apoptosis. Environ. Mol. Mutagen., 2005. Published 2005 Wiley-Liss, Inc. [source]


    Genomics of Brain and Blood: Progress and Pitfalls

    EPILEPSIA, Issue 10 2006
    Frank R Sharp
    Summary:, Gene expression profiles in brain and blood of animals and humans can be useful for diagnosis, prognosis, and treatment of epilepsy. This article reviews recent progress and prospects for the future. [source]


    Two independent gene signatures in pediatric t(4;11) acute lymphoblastic leukemia patients

    EUROPEAN JOURNAL OF HAEMATOLOGY, Issue 5 2009
    Luca Trentin
    Abstract Objective:, Gene expression profiles become increasingly more important for diagnostic procedures, allowing clinical predictions including treatment response and outcome. However, the establishment of specific and robust gene signatures from microarray data sets requires the analysis of large numbers of patients and the application of complex biostatistical algorithms. Especially in case of rare diseases and due to these constrains, diagnostic centers with limited access to patients or bioinformatic resources are excluded from implementing these new technologies. Method:, In our study we sought to overcome these limitations and for proof of principle, we analyzed the rare t(4;11) leukemia disease entity. First, gene expression data of each t(4;11) leukemia patient were normalized by pairwise subtraction against normal bone marrow (n = 3) to identify significantly deregulated gene sets for each patient. Result:, A ,core signature' of 186 commonly deregulated genes present in each investigated t(4;11) leukemia patient was defined. Linking the obtained gene sets to four biological discriminators (HOXA gene expression, age at diagnosis, fusion gene transcripts and chromosomal breakpoints) divided patients into two distinct subgroups: the first one comprised infant patients with low HOXA genes expression and the MLL breakpoints within introns 11/12. The second one comprised non-infant patients with high HOXA expression and MLL breakpoints within introns 9/10. Conclusion:, A yet homogeneous leukemia entity was further subdivided, based on distinct genetic properties. This approach provided a simplified way to obtain robust and disease-specific gene signatures even in smaller cohorts. [source]


    Characterization of chitinase-like proteins (Cg -Clp1 and Cg -Clp2) involved in immune defence of the mollusc Crassostrea gigas

    FEBS JOURNAL, Issue 14 2007
    Fabien Badariotti
    Chitinase-like proteins have been identified in insects and mammals as nonenzymatic members of the glycoside hydrolase family 18. Recently, the first molluscan chitinase-like protein, named Crassostrea gigas (Cg)-Clp1, was shown to control the proliferation and synthesis of extracellular matrix components of mammalian chondrocytes. However, the precise physiological roles of Cg -Clp1 in oysters remain unknown. Here, we report the cloning and the characterization of a new chitinase-like protein (Cg -Clp2) from the oyster Crassostrea gigas. Gene expression profiles monitored by quantitative RT-PCR in adult tissues and through development support its involvement in tissue growth and remodelling. Both Cg -Clp1- and Cg -Clp2-encoding genes were transcriptionally stimulated in haemocytes in response to bacterial lipopolysaccharide challenge, strongly suggesting that these two close paralogous genes play a role in oyster immunity. [source]


    Gene expression profiling of the pH response in Shigella flexneri 2a

    FEMS MICROBIOLOGY LETTERS, Issue 1 2007
    Fan Cheng
    Abstract The pH response of Shigella flexneri 2a 301 was identified by gene expression profiling. Gene expression profiles of cells grown in pH 4.5 or 8.6 were compared with the profiles of cells grown at pH 7.0. Differential expression was observed for 307 genes: 97 were acid up-regulated, 102 were acid down-regulated, 91 were base up-regulated, and 86 were base down-regulated. Twenty-seven genes were found to be both acid and base up-regulated, and 29 genes were both acid and base down-regulated. This study showed that (1) the most pH-dependent genes regulate energy metabolism; (2) the RpoS-dependent acid-resistance system is induced, while the glutamate-dependent acid resistance system is not; (3) high pH up-regulates some virulence genes, while low pH down-regulates them, consistent with Shigella infection of the low gut; and (4) several cross-stress response genes are induced by pH changes. These results also illustrate that many unknown genes are significantly regulated under acid or basic conditions, providing researchers with important information to characterize their function. [source]


    Genome-wide expression analysis of iron regulation in Burkholderia pseudomallei and Burkholderia mallei using DNA microarrays

    FEMS MICROBIOLOGY LETTERS, Issue 2 2005
    Apichai Tuanyok
    Abstract Burkholderia pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively. As iron regulation of gene expression is common in bacteria, in the present studies, we have used microarray analysis to examine the effects of growth in different iron concentrations on the regulation of gene expression in B. pseudomallei and B. mallei. Gene expression profiles for these two bacterial species were similar under high and low iron growth conditions irrespective of growth phase. Growth in low iron led to reduced expression of genes encoding most respiratory metabolic systems and proteins of putative function, such as NADH-dehydrogenases, cytochrome oxidases, and ATP-synthases. In contrast, genes encoding siderophore-mediated iron transport, heme-hemin receptors, and a variety of metabolic enzymes for alternative metabolism were induced under low iron conditions. The overall gene expression profiles suggest that B. pseudomallei and B. mallei are able to adapt to the iron-restricted conditions in the host environment by up-regulating an iron-acquisition system and by using alternative metabolic pathways for energy production. The observations relative to the induction of specific metabolic enzymes during bacterial growth under low iron conditions warrants further experimentation. [source]


    Expression profiling correlates with treatment response in women with advanced serous epithelial ovarian cancer

    INTERNATIONAL JOURNAL OF CANCER, Issue 4 2006
    Tanya R. Newton
    Abstract The majority of epithelial ovarian carcinomas are of serous subtype, with most women presenting at an advanced stage. Approximately 70% respond to initial chemotherapy but eventually relapse. We aimed to find markers of treatment response that might be suitable for routine use, using the gene expression profile of tumor tissue. Thirty one women with histologically-confirmed late-stage serous ovarian cancer were classified into 3 groups based on response to treatment (nonresponders, responders with relapse less than 12 months and responders with no relapse within 12 months). Gene expression profiles of these specimens were analyzed with respect to treatment response and survival (minimum 36 months follow-up). Patients' clinical features did not correlate with prognosis, or with specific gene expression patterns of their tumors. However women who did not respond to treatment could be distinguished from those who responded with no relapse within 12 months based on 34 gene transcripts (p < 0.02). Poor prognosis was associated with high expression of inhibitor of differentiation-2 (ID2) (p = 0.001). High expression of decorin (DCN) and ID2 together was strongly associated with reduced survival (p = 0.003), with an estimated 7-fold increased risk of dying (95% CI 1.9,29.6; 14 months survival) compared with low expression (44 months). Immunohistochemical analysis revealed both nuclear and cytoplasmic distribution of ID2 in ovarian tumors. High percentage of nuclear staining was associated with poor survival, although not statistically significantly. In conclusion, elevated expression of ID2 and DCN was significantly associated with poor prognosis in a homogeneous group of ovarian cancer patients for whom survival could not be predicted from clinical factors. © 2006 Wiley-Liss, Inc. [source]


    Loss of intercellular adhesion activates a transition from low- to high-grade human squamous cell carcinoma

    INTERNATIONAL JOURNAL OF CANCER, Issue 4 2006
    Alexander Margulis
    Abstract The relationship between loss of intercellular adhesion and the biologic properties of human squamous cell carcinoma is not well understood. We investigated how abrogation of E-cadherin-mediated adhesion influenced the behavior and phenotype of squamous cell carcinoma in 3D human tissues. Cell-cell adhesion was disrupted in early-stage epithelial tumor cells (HaCaT-II-4) through expression of a dominant-negative form of E-cadherin (H-2Kd -Ecad). Three-dimensional human tissue constructs harboring either H-2Kd -Ecad-expressing or control II-4 cells (pBabe, H-2Kd -Ecad,C25) were cultured at an air-liquid interface for 8 days and transplanted to nude mice; tumor phenotype was analyzed 2 days and 2 and 4 weeks later. H-2Kd -Ecad-expressing tumors demonstrated a switch to a high-grade aggressive tumor phenotype characterized by poorly differentiated tumor cells that infiltrated throughout the stroma. This high-grade carcinoma revealed elevated cell proliferation in a random pattern, loss of keratin 1 and diffuse deposition of laminin 5 ,2 chain. When II-4 cell variants were seeded into type I collagen gels as an in vitro assay for cell migration, we found that only E-cadherin-deficient cells detached, migrated as single cells and expressed N-cadherin. Function-blocking studies demonstrated that this migration was matrix metalloproteinase-dependent, as GM-6001 and TIMP-2, but not TIMP-1, could block migration. Gene expression profiles revealed that E-cadherin-deficient II-4 cells demonstrated increased expression of proteases and cell-cell and cell-matrix proteins. These findings showed that loss of E-cadherin-mediated adhesion plays a causal role in the transition from low- to high-grade squamous cell carcinomas and that the absence of E-cadherin is an important prognostic marker in the progression of this disease. © 2005 Wiley-Liss, Inc. [source]


    Gene expression profiles associated with aging and mortality in humans

    AGING CELL, Issue 3 2009
    Richard A. Kerber
    Summary We investigated the hypothesis that gene expression profiles in cultured cell lines from adults, aged 57,97 years, contain information about the biological age and potential longevity of the donors. We studied 104 unrelated grandparents from 31 Utah CEU (Centre d'Etude du Polymorphisme Humain , Utah) families, for whom lymphoblastoid cell lines were established in the 1980s. Combining publicly available gene expression data from these cell lines, and survival data from the Utah Population Database, we tested the relationship between expression of 2151 always-expressed genes, age, and survival of the donors. Approximately 16% of 2151 expression levels were associated with donor age: 10% decreased in expression with age, and 6% increased with age. Cell division cycle 42 (CDC42) and CORO1A exhibited strong associations both with age at draw and survival after draw (multiple comparisons-adjusted Monte Carlo P -value < 0.05). In general, gene expressions that increased with age were associated with increased mortality. Gene expressions that decreased with age were generally associated with reduced mortality. A multivariate estimate of biological age modeled from expression data was dominated by CDC42 expression, and was a significant predictor of survival after blood draw. A multivariate model of survival as a function of gene expression was dominated by CORO1A expression. This model accounted for approximately 23% of the variation in survival among the CEU grandparents. Some expression levels were negligibly associated with age in this cross-sectional dataset, but strongly associated with inter-individual differences in survival. These observations may lead to new insights regarding the genetic contribution to exceptional longevity. [source]


    Gene expression in endoprosthesis loosening: Chitinase activity for early diagnosis?,

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2008
    L. Morawietz
    Abstract The aim of the study was to identify markers for the early diagnosis of endoprosthesis loosening, for the differentiation between wear particle,induced and septic loosening and to gather new insights into the pathogenesis of endoprosthesis loosening. Gene expression profiles were generated from five periprosthetic membranes of wear particle,induced and five of infectious (septic) type using Affymetrix HG U133A oligonucleotide microarrays. The results of selected differentially expressed genes were validated by RT-PCR (n,=,30). The enzyme activity and the genotype of chitinase-1 were assessed in serum samples from 313 consecutive patients hospitalized for endoprosthesis loosening (n,=,54) or for other reasons, serving as control subjects (n,=,259). Eight hundred twenty-four genes were differentially expressed with a fold change greater than 2 (data sets on http://www.ncbi.nlm.nih.gov/geo/ GSE 7103). Among these were chitinase 1, CD52, calpain 3, apolipoprotein, CD18, lysyl oxidase, cathepsin D, E-cadherin, VE-cadherin, nidogen, angiopoietin 1, and thrombospondin 2. Their differential expression levels were validated by RT-PCR. The chitinase activity was significantly higher in the blood from patients with wear particle,induced prosthesis loosening (p,=,0.001). However, chitinase activity as a marker for early diagnosis has a specificity of 83% and a sensitivity of 52%, due to a high variability both in the disease and in the control group. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:394,403, 2008 [source]


    Bayesian classification of tumours by using gene expression data

    JOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES B (STATISTICAL METHODOLOGY), Issue 2 2005
    Bani K. Mallick
    Summary., Precise classification of tumours is critical for the diagnosis and treatment of cancer. Diagnostic pathology has traditionally relied on macroscopic and microscopic histology and tumour morphology as the basis for the classification of tumours. Current classification frameworks, however, cannot discriminate between tumours with similar histopathologic features, which vary in clinical course and in response to treatment. In recent years, there has been a move towards the use of complementary deoxyribonucleic acid microarrays for the classi-fication of tumours. These high throughput assays provide relative messenger ribonucleic acid expression measurements simultaneously for thousands of genes. A key statistical task is to perform classification via different expression patterns. Gene expression profiles may offer more information than classical morphology and may provide an alternative to classical tumour diagnosis schemes. The paper considers several Bayesian classification methods based on reproducing kernel Hilbert spaces for the analysis of microarray data. We consider the logistic likelihood as well as likelihoods related to support vector machine models. It is shown through simulation and examples that support vector machine models with multiple shrinkage parameters produce fewer misclassification errors than several existing classical methods as well as Bayesian methods based on the logistic likelihood or those involving only one shrinkage parameter. [source]


    Short communication: Analysis of CD4+ T-cell gene expression in allergic subjects using two different microarray platforms

    ALLERGY, Issue 3 2008
    N. N. Hansel
    Background:, Allergic diseases are thought to involve dysregulated activation of T cells including CD4+ lymphocytes. T-cell activation results in changes in gene expression, but the optimal method to study gene expression profiles in T cells, and how this changes over time, are not known. Methods:, Circulating CD4+ T cells were obtained from subjects with atopic asthma, nonatopic asthma or nonallergic controls, and total mRNA was rapidly isolated. Atopy was defined as positive skin prick test to one of nine allergens. Gene expression was analyzed using hybridization and Affymetrix® oligonucleotide arrays (Hu133A and Hu133B chips, n = 84), or by reverse transcription-polymerase chain reaction (RT-PCR) with a pathway-targeted array (Human Th1,Th2,Th3 RT2 ProfilerTM PCR Array, Superarray, n = 16). Results:, Using Affymetrix arrays, it was difficult to discern a dominant allergy-associated profile because of heterogeneity in gene expression profiles. In contrast, a Th2-like signature was evident using RT-PCR arrays with increased expression of expected genes (e.g. IL-4, 5, 9, and 13, all P < 0.05) as well as unexpected gene transcripts (e.g. osteopontin). Gene expression profiles were relatively stable over time in circulating CD4+ T cells from two subjects using both platforms. Conclusions:, Unstimulated CD4+ T cells isolated from allergic subjects express a characteristic profile of genes when analyzed using RT-PCR based microarrays. [source]


    Flufenacet herbicide treatment phenocopies the fiddlehead mutant in Arabidopsis thaliana

    PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 8 2003
    Christa Lechelt-Kunze
    Abstract In order to study the mode of action of herbicides we conducted a pilot study analysing phenotype and gene expression of flufenacet- and benfuresate-treated Arabidopsis thaliana (L) Heynhoe plants. Treatments with either herbicide caused phenocopies of the known Arabidopsis mutant fiddlehead, displaying fused organs and the typical fiddlehead-like inflorescence. Herbicide treatments of other plant species, including monocots, also gave rise to analogous organ fusions, indicating the presence of the target in a broad range of plants. Furthermore, many other herbicides with a proposed similar mode of action, eg chloroacetanilides, produced comparable fusion phenotypes in plants. The fiddlehead gene encodes a putative very-long-chain fatty acid elongase (VLCFAE), which corroborates earlier biochemical results pointing to the inhibition of VLCFA synthesis as mode of action of flufenacet. Gene expression profiles of herbicide-treated plants using the first 8247 gene Arabidopsis gene array of Affymetrix provided additional clues in support of inhibition of VLCFA synthesis. We discuss fiddlehead -like elongases as plant specific targets for flufenacet and many other herbicides. Copyright © 2003 Society of Chemical Industry [source]


    Gene expression profiles of TNF-,, TACE, furin, IL-1, and matrilysin in UVA- and UVB-irradiated HaCat cells

    PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE, Issue 4 2005
    Beata Skiba
    Background/Purpose: It is known that solar ultraviolet (UV) irradiation exerts multiple effects on mammalian skin tissues, one of which is the induction of local and systemic immunosuppression as well as inflammation. Tumor necrosis factor-, (TNF-,) and other cytokines are suggested to play a role in these responses. Quantitative real-time polymerase chain reaction (TaqMan RTPCR) was used to elucidate the effect of UVA and UVB irradiation on the expression of genes coding for TNF-,, IL-1,, IL-10, FasL, matrilysin, TACE and furin in HaCaT cells over a 48 h period (IL-1,, interleukin-1,; FasL, Fas ligand). Methods: Cultured HaCaT cells were either sham irradiated (control) or exposed to UVA (2000 and 8000 J/m2) or UVB (200 and 2000 J/m2) radiation. RNA was extracted from cells at 0, 4, 8, 12, 16, 24, 48 h post-irradiation and reverse transcribed to generate cDNA for subsequent real-time PCR amplification. Results: Significant increases in the mRNA levels for all genes tested were detected in both UVA- and UVB-irradiated HaCaT cells compared with control (sham-irradiated) cells. TNF-, mRNA levels were immediately up-regulated (0 h) after irradiation, with maximal induction at 8 h post 2000 J/m2 UVA and 200 J/m2 UVB irradiation, at 4 h post 8000 J UVA irradiation and at 48 h post 2000 J/m2 UVB irradiation. No correlation was observed between TNF-,, TACE and furin mRNA induction in the different irradiated cohorts. Conclusion: Results suggest that time-distinct gene induction of TNF-,, furin, IL-1, and matrilysin may be involved in UV-induced cellular responses, but not for TACE. In general, mRNA induction was dose dependent at some time points post-irradiation, but not throughout the whole time course tested. Our results show that quantitative real-time PCR is a useful tool in the analysis of quantitative changes of mRNA levels in cultured HaCaT cells after UV exposure. [source]


    Gene expression profiles of O3 -treated Arabidopsis plants

    PLANT CELL & ENVIRONMENT, Issue 9 2006
    NICOLA TOSTI
    ABSTRACT To analyse cellular response to O3, the tolerant Arabidopsis thaliana genotype Col-0 was exposed to O3 fumigation (300 ppb) for 6 h and the modulation of gene expression during the treatment (3 h after the beginning of the treatment, T3 h) and the recovery phase (6 h from the end of the treatment, T12 h) assessed by gene chip microarray and real-time reverse transcriptase (RT)-PCR analyses. The Arabidopsis transcriptional profile is complex, as new genes (i.e. reticuline oxidase) and pathways, other than those already reported as O3 -responsive, appear to be involved in the O3 response. The steady-state transcript levels of several WRKY genes were increased in O3 -treated plants and the W-box was the cis -element over-represented in the promoter region of T3 h up-regulated genes. The fact that the W-box element was also over-represented in almost all T3 h-induced receptor-like kinases (RLKs) suggests a WRKY-mediated control of RLKs under O3 stress and a mechanicistic similarity with the pathogen-induced transcriptional responses. We investigated the molecular and physiological implications of our findings in relation to O3 -induced plant stress response. [source]


    Microarray analysis of gene expression associated with extrapulmonary dissemination of tuberculosis

    RESPIROLOGY, Issue 5 2006
    Deog Kyeom KIM
    Objective: Although extrapulmonary organs are involved in 20% of patients with tuberculosis, the host genetic factors associated with the extrapulmonary dissemination of tuberculosis are not yet known. The aim of this study was to identify the host genetic factors associated with the extrapulmonary dissemination of tuberculosis by comparing gene expression profiles of patients who had recovered from extrapulmonary tuberculosis and those who had recovered from pulmonary tuberculosis. Methods: Five patients from each group were enrolled. Total RNA was extracted from peripheral blood mononuclear cells that had been incubated for 48 h with whole lysate of Mycobacterium tuberculosis (H37Rv, 0.5 µg/mL). Gene expression profiles were acquired using the GeneChip® array and its applied systems. Gene expression profiles from five patients with previous extrapulmonary tuberculosis and one pooled control sample from five patients with previous pulmonary tuberculosis were analysed and compared. Genes that were expressed concordantly in more than 80% of arrays and that showed more than twofold changes in at least one array among samples from patients who had recovered from extrapulmonary tuberculosis were identified. Results: Compared with the control sample, the expression of 16 genes, including those for tumour necrosis factor (TNF)-, and cathepsin W, was increased, and the expression of 45 genes including that for TNF-receptor superfamily member 7 (TNFRSF7), was decreased in the extrapulmonary tuberculosis patients. The altered expression of the TNF-,, cathepsin W and TNFRSF7 genes was confirmed by quantitative RT-PCR. Conclusions: Altered expression of the genes for TNF-,, cathepsin W and TNFRSF7 may be risk factors for the extrapulmonary dissemination of tuberculosis in humans. [source]


    Beta-catenin status in paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics,

    THE JOURNAL OF PATHOLOGY, Issue 1 2009
    Sarah Fattet
    Abstract Medulloblastoma is the most frequent malignant paediatric brain tumour. The activation of the Wnt/,-catenin pathway occurs in 10-15% of medulloblastomas and has been recently described as a marker for favourable patient outcome. We report a series of 72 paediatric medulloblastomas evaluated for ,-catenin protein expression, CTNNB1 mutations, and comparative genomic hybridization. Gene expression profiles were also available in a subset of 40 cases. Immunostaining of ,-catenin showed extensive nuclear staining (>50% of the tumour cells) in six cases and focal nuclear staining (<10% of cells) in three cases. The other cases either exhibited a signal strictly limited to the cytoplasm (58 cases) or were negative (five cases). CTNNB1 mutations were detected in all ,-catenin extensively nucleopositive cases. The expression profiles of these cases documented strong activation of the Wnt/,-catenin pathway. Remarkably, five out of these six tumours showed a complete loss of chromosome 6. In contrast, cases with focal nuclear ,-catenin staining, as well as tumours with negative or cytoplasmic staining, never demonstrated CTNNB1 mutation, Wnt/,-catenin pathway activation or chromosome 6 loss. Patients with extensive nuclear staining were significantly older at diagnosis and were in continuous complete remission after a mean follow-up of 75.7 months (range 27.5,121.2 months) from diagnosis. All three patients with focal nuclear staining of ,-catenin died within 36 months from diagnosis. Altogether, these data confirm and extend previous observations that CTNNB1 -mutated tumours represent a distinct molecular subgroup of medulloblastomas with favourable outcome, indicating that therapy de-escalation should be considered. International consensus on the definition criteria of this distinct medulloblastoma subgroup should be achieved. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]


    The influence of extracellular matrix and prolactin on global gene expression profiles of primary bovine mammary epithelial cells in vitro

    ANIMAL GENETICS, Issue 1 2010
    L. G. Riley
    Summary An in vitro bovine mammosphere model was characterized for use in lactational biology studies using a functional genomics approach. Primary bovine mammary epithelial cells cultured on a basement membrane, Matrigel, formed three-dimensional alveoli-like structures or mammospheres. Gene expression profiling during mammosphere formation by high-density microarray analysis indicated that mammospheres underwent similar molecular and cellular processes to developing alveoli in the mammary gland. Gene expression profiles indicated that genes involved in milk protein and fat biosynthesis were expressed, however, lactose biosynthesis may have been compromised. Investigation of factors influencing mammosphere formation revealed that extracellular matrix (ECM) was responsible for the initiation of this process and that prolactin (Prl) was necessary for high levels of milk protein expression. CSN3 (encoding ,-casein) was the most highly expressed casein gene, followed by CSN1S1 (encoding ,S1-casein) and CSN2 (encoding ,-casein). Eighteen Prl-responsive genes were identified, including CSN1S1, SOCS2 and CSN2, however, expression of CSN3 was not significantly increased by Prl and CSN1S2 was not expressed at detectable levels in mammospheres. A number of novel Prl responsive genes were identified, including ECM components and genes involved in differentiation and apoptosis. This mammosphere model is a useful model system for functional genomics studies of certain aspects of dairy cattle lactation. [source]


    Human ovarian surface epithelial cells immortalized with hTERT maintain functional pRb and p53 expression

    CELL PROLIFERATION, Issue 5 2007
    N. F. Li
    Normal human ovarian surface epithelial (OSE) cells, which are thought to be the origin of most of human ovarian carcinomas, have a very limited lifespan in culture. Establishment of immortalized OSE cell lines has, in the past, required inactivation of pRb and p53 functions. However, this often leads to increased chromosome instability during prolonged culture. Materials and Methods:,In this study, we have used a retroviral infection method to overexpress human telomerase reverse transcriptase (hTERT) gene, in primary normal OSE cells, under optimized culture conditions. Results:,In vitro and in vivo analysis of hTERT-immortalized cell lines confirmed their normal epithelial characteristics. Gene expression profiles and functional analysis of p16INK4A, p15INK4B, pRb and p53 confirmed the presence of their intact functions. Our study suggests that inactivation of pRb and p53 is not necessary for OSE immortalization. Furthermore, down-regulation of p15INK4B in the immortalized cells may indicate a functional role for this protein in them. Conclusion:,These immortal OSE cell lines are likely to be an important tool for studying human OSE biology and carcinogenesis. [source]


    Controlling False Discoveries in Multidimensional Directional Decisions, with Applications to Gene Expression Data on Ordered Categories

    BIOMETRICS, Issue 2 2010
    Wenge Guo
    Summary Microarray gene expression studies over ordered categories are routinely conducted to gain insights into biological functions of genes and the underlying biological processes. Some common experiments are time-course/dose-response experiments where a tissue or cell line is exposed to different doses and/or durations of time to a chemical. A goal of such studies is to identify gene expression patterns/profiles over the ordered categories. This problem can be formulated as a multiple testing problem where for each gene the null hypothesis of no difference between the successive mean gene expressions is tested and further directional decisions are made if it is rejected. Much of the existing multiple testing procedures are devised for controlling the usual false discovery rate (FDR) rather than the mixed directional FDR (mdFDR), the expected proportion of Type I and directional errors among all rejections. Benjamini and Yekutieli (2005,,Journal of the American Statistical Association,100, 71,93) proved that an augmentation of the usual Benjamini,Hochberg (BH) procedure can control the mdFDR while testing simple null hypotheses against two-sided alternatives in terms of one-dimensional parameters. In this article, we consider the problem of controlling the mdFDR involving multidimensional parameters. To deal with this problem, we develop a procedure extending that of Benjamini and Yekutieli based on the Bonferroni test for each gene. A proof is given for its mdFDR control when the underlying test statistics are independent across the genes. The results of a simulation study evaluating its performance under independence as well as under dependence of the underlying test statistics across the genes relative to other relevant procedures are reported. Finally, the proposed methodology is applied to a time-course microarray data obtained by Lobenhofer et al. (2002,,Molecular Endocrinology,16, 1215,1229). We identified several important cell-cycle genes, such as DNA replication/repair gene MCM4 and replication factor subunit C2, which were not identified by the previous analyses of the same data by Lobenhofer et al. (2002) and Peddada et al. (2003,,Bioinformatics,19, 834,841). Although some of our findings overlap with previous findings, we identify several other genes that complement the results of Lobenhofer et al. (2002). [source]


    Neutrophil influx during non-typhoidal salmonellosis: who is in the driver's seat?

    FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 3 2006
    Çagla Tükel
    Abstract A massive neutrophil influx in the intestine is the histopathological hallmark of Salmonella enterica serovar Typhimurium-induced enterocolitis in humans. Two major hypotheses on the mechanism leading to neutrophil infiltration in the intestinal mucosa have emerged. One hypothesis suggests that S. enterica serovar Typhimurium takes an active role in triggering this host response by injecting proteins, termed effectors, into the host cell cytosol which induce a proinflammatory gene expression profile in the intestinal epithelium. The second hypothesis suggests a more passive role for the pathogen by proposing that bacterial invasion stimulates the innate pathways of inflammation because the pathogen-associated molecular patterns of S. enterica serovar Typhimurium are recognized by pathogen recognition receptors on cells in the lamina propria. A review of the current literature reveals that, while pathogen recognition receptors are clearly involved in eliciting neutrophil influx during S. enterica serovar Typhimurium infection, a direct contribution of effectors in triggering proinflammatory host cell responses cannot currently be ruled out. [source]