Home About us Contact | |||
Gene Expression Changes (gene + expression_change)
Selected AbstractsInhibition of prostaglandin synthesis and actions by genistein in human prostate cancer cells and by soy isoflavones in prostate cancer patientsINTERNATIONAL JOURNAL OF CANCER, Issue 9 2009Srilatha Swami Abstract Soy and its constituent isoflavone genistein inhibit the development and progression of prostate cancer (PCa). Our study in both cultured cells and PCa patients reveals a novel pathway for the actions of genistein, namely the inhibition of the synthesis and biological actions of prostaglandins (PGs), known stimulators of PCa growth. In the cell culture experiments, genistein decreased cyclooxygenase-2 (COX-2) mRNA and protein expression in both human PCa cell lines (LNCaP and PC-3) and primary prostate epithelial cells and increased 15-hydroxyprostaglandin dehydrogenase (15-PGDH) mRNA levels in primary prostate cells. As a result genistein significantly reduced the secretion of PGE2 by these cells. EP4 and FP PG receptor mRNA were also reduced by genistein, providing an additional mechanism for the suppression of PG biological effects. Further, the growth stimulatory effects of both exogenous PGs and endogenous PGs derived from precursor arachidonic acid were attenuated by genistein. We also performed a pilot randomised double blind clinical study in which placebo or soy isoflavone supplements were given to PCa patients in the neo-adjuvant setting for 2 weeks before prostatectomy. Gene expression changes were measured in the prostatectomy specimens. In PCa patients ingesting isoflavones, we observed significant decreases in prostate COX-2 mRNA and increases in p21 mRNA. There were significant correlations between COX-2 mRNA suppression, p21 mRNA stimulation and serum isoflavone levels. We propose that the inhibition of the PG pathway contributes to the beneficial effect of soy isoflavones in PCa chemoprevention and/or treatment. © 2008 Wiley-Liss, Inc. [source] Transcriptional response to aging and caloric restriction in heart and adipose tissueAGING CELL, Issue 5 2007Nancy J. Linford Summary Sustained caloric restriction (CR) extends lifespan in animal models but the mechanism and primary tissue target(s) have not been identified. Gene expression changes with aging and CR were examined in both heart and white adipose tissue (WAT) of Fischer 344 (F344) male rats using Affymetrix® RAE 230 arrays and validated by quantitative reverse transcriptase,polymerase chain reaction (qRT-PCR) on 18 genes. As expected, age had a substantial effect on transcription on both tissues, although only 21% of cardiac age-associated genes were also altered in WAT. Gene set enrichment analysis revealed coordinated small magnitude changes in ribosomal, proteasomal, and mitochondrial genes with similarities in aging between heart and WAT. CR had very different effects on these two tissues at the transcriptional level. In heart, very few age-associated expression changes were affected by CR, while in WAT, CR suppressed a substantial subset of the age-associated changes. Genes unaltered by aging but altered by CR were identified in WAT but not heart. Most interestingly, we identified a gene expression signature associated with mammalian target of rapamycin (mTOR) activity that was down-regulated with age but preserved by CR in both WAT and heart. In addition, lipid metabolism genes, particularly those associated with peroxisome proliferator-activated receptor , (PPAR,)-mediated adipogenesis were reduced with age but preserved with CR in WAT. These results highlight tissue-specific differences in the gene expression response to CR and support a role for CR-mediated preservation of mTOR activity and adipogenesis in aging WAT. [source] Chronic Ethanol Feeding Alters Hepatocyte Memory Which is not Altered by Acute FeedingALCOHOLISM, Issue 4 2009F. Bardag-Gorce Background:, Gene expression changes in the liver after acute binge drinking may differ from the changes seen in chronic ethanol feeding in the rat. The changes in gene expression after chronic ethanol feeding may sensitize the liver to alcohol-induced liver damage, which is not seen after acute binge drinking. Methods:, To test this hypothesis, gene microarray analysis was performed on the livers of rats (n = 3) fed an acute binge dose of ethanol (6 g/kg body wt) and killed at 3 and 12 hours after ethanol by gavage. The gene microarrays were compared with those made on the liver of rats from a previous study, in which the rats were fed ethanol by intragastric tube for 1 month (36% of calories derived from ethanol). Results:, Microarray analysis data varied between the acute and chronic models in several important respects. Growth factors increased mainly in the chronic alcohol fed rat. Changes in enzymes involved in oxidative stress were noted only with chronic ethanol feeding. Gene expression of fat metabolism was increased only with chronic ethanol feeding. Most importantly, epigenetic related enzymes and acetylation and methylation of histones changed only after chronic ethanol feeding. Conclusions:, The results support the concept that chronic ethanol ingestion induces altered gene expression as a result of changes in epigenetic mechanisms, where acetylation and methylation of histones were altered. [source] Gene expression changes following androgen receptor elimination in LNCaP prostate cancer cellsMOLECULAR CARCINOGENESIS, Issue 4 2003Iris E. Eder Abstract We have shown recently that inhibition of androgen receptor (AR) expression with an antisense AR oligonucleotide (ODN) inhibits LNCaP prostate tumor cells in vitro as well as in vivo. In this study, we investigated gene expression changes that occur after AR signaling blockade, either through AR elimination by antisense treatment or through complete androgen receptor inhibition by androgen deprivation combined with the antiandrogen bicalutamide, in order to search for genes that are directly or indirectly regulated through the AR. Gene expression changes were investigated with cDNA NIH 10K gene microarrays in response to treatment over 48 h. Expression of selected genes was further analyzed by real-time reverse transcriptase (RT)-polymerase chain reaction (PCR), Western blotting, and radioimmunoassay. A comparison of antisense-treated and androgen-deprived cells revealed several concordances such as significant downregulation of prostate-specific genes, cell-cycle regulatory genes, genes of the cholesterol biosynthesis pathway, and several cytoskeletal genes. However, there were also several genes that were differentially regulated. Among the genes that were exclusively changed by treatment with the antisense AR ODN were the insulin-like growth factor binding protein 2 (IGFBP2) and the phosphatidylinositol-4-phosphate 5-kinase type I alpha (PIP5KIA). On the other hand, complete androgen receptor blockade induced changes in the expression of the prostate overexpressed gene 1 and the S100 calcium binding protein P. In summary, we identified a cohort of interesting genes whose expression was highly affected by elimination of the AR in LNCaP prostate cancer cells. Further investigations are warranted to clarify their role in the AR signaling pathway and their susceptibility as a target for the treatment of prostate cancer. © 2003 Wiley-Liss, Inc. [source] Gene expression changes in postmortem tissue from the rostral pons of multiple system atrophy patientsMOVEMENT DISORDERS, Issue 6 2007Anna Jelaso Langerveld PhD Abstract Multiple system atrophy (MSA) is a neurodegenerative disease characterized by various degrees of Parkinsonism, cerebellar ataxia, and autonomic dysfunction. In this report, Affymetrix DNA microarrays were used to measure changes in gene expression in the rostral pons, an area that undergoes extensive damage in MSA, but not other synucleinopathies. Significant changes in expression of 254 genes (180 downregulated and 74 upregulated) occurred in pons tissue from MSA patients when compared with control patients. The downregulated genes were primarily associated with biological functions known to be impaired in Parkinson's disease (PD) and other neurological diseases; for example, downregulation occurred in genes associated with mitochondrial function, ubiquitin-proteasome function, protein modification, glycolysis/metabolism, and ion transport. On the other hand, upregulated genes were associated with transcription/RNA modification, inflammation, immune system function, and oligodendrocyte maintenance and function. Immunocytochemistry, in conjunction with quantitative image analysis, was carried out to characterize ,-synuclein protein expression as glial cytoplasmic inclusions in the pontocerebellar tract in rostral pons tissue and to determine the relationship between the amount of aggregated ,-synuclein protein and changes in specific gene expression. Of the regulated genes, 86 were associated with the amount of observed aggregated ,-synuclein protein in the rostral pons tissue. These data indicate that cells in the pons of MSA patients show changes in gene expression previously associated with the substantia nigra of PD patients and/or other neurological diseases, with additional changes, for example related to oligodendrocyte function unique to MSA. © 2007 Movement Disorder Society [source] Gene expression changes in human cells after exposure to mobile phone microwavesPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 17 2006Daniel Remondini Abstract Possible biological effects of mobile phone microwaves were investigated in,vitro. In this study, which was part of the 5FP EU project REFLEX (Risk Evaluation of Potential Environmental Hazards From Low-Energy Electromagnetic Field Exposure Using Sensitive in,vitro Methods), six human cell types, immortalized cell lines and primary cells, were exposed to 900 and 1800,MHz. RNA was isolated from exposed and sham-exposed cells and labeled for transcriptome analysis on whole-genome cDNA arrays. The results were evaluated statistically using bioinformatics techniques and examined for biological relevance with the help of different databases. NB69 neuroblastoma cells, T,lymphocytes, and CHME5 microglial cells did not show significant changes in gene expression. In EA.hy926 endothelial cells, U937,lymphoblastoma cells, and HL-60 leukemia cells we found between 12 and 34,up- or down-regulated genes. Analysis of the affected gene families does not point towards a stress response. However, following microwave exposure, some but not all human cells might react with an increase in expression of genes encoding ribosomal proteins and therefore up-regulating the cellular metabolism. [source] A TEST OF THE NEUTRAL MODEL OF EXPRESSION CHANGE IN NATURAL POPULATIONS OF HOUSE MOUSE SUBSPECIESEVOLUTION, Issue 2 2010Fabian Staubach Changes in expression of genes are thought to contribute significantly to evolutionary divergence. To study the relative role of selection and neutrality in shaping expression changes, we analyzed 24 genes in three different tissues of the house mouse (Mus musculus). Samples from two natural populations of the subspecies M. m. domesticus and M. m. musculus were investigated using quantitative PCR assays and sequencing of the upstream region. We have developed an approach to quantify expression polymorphism within such populations and to disentangle technical from biological variation in the data. We found a correlation between expression polymorphism within populations and divergence between populations. Furthermore, we found a correlation between expression polymorphism and sequence polymorphism of the respective genes. These data are most easily interpreted within a framework of a predominantly neutral model of gene expression change, where only a fraction of the changes may have been driven by positive selection. Although most genes investigated were expressed in all three tissues analyzed, significant changes of expression levels occurred predominantly in a single tissue only. This adds to the notion that enhancer-specific effects or transregulatory effects can modulate the evolution of gene expression in a tissue-specific way. [source] Selection of normalizer genes in conducting relative gene expression analysis of embryosBIRTH DEFECTS RESEARCH, Issue 8 2003Qin J. Zhang Abstract BACKGROUND In relative gene expression analysis, a reference gene for sample normalization is required for determining target expression changes among experimental treatment groups. Since some developmental toxicants secondarily cause general growth retardation and/or other general biological changes, commonly used housekeeping genes may not serve as accurate normalizers. METHODS We conducted real-time polymerase chain reaction (PCR) with normalization to calculate relative target transcriptional change, using housekeeping and structure-specific expression genes as normalizers. Relative levels of Hoxb1 expression were measured in cultured rodent embryos at 24 hr post retinoic acid (RA) administration. Transcriptional response was also evaluated using two novel compounds that produced posterior axial and growth defects in rat whole-embryo culture. Embryos treated with these compounds were evaluated for general biological processes, and their respective biological states were considered in the context of the relative gene expression change calculated with the housekeeping normalizers. RESULTS Normalized RA-induced Hoxb1 expression demonstrated that only some reference genes accurately quantitated the expected 1.5- to 2-fold increase in Hoxb1 expression. Evaluation of the test compounds demonstrated that only normalization with the spatially-restricted hindbrain gene, Krox-20, calculated significant expression decreases of T -gene, a gene known to be functionally relevant in posterior axial development. Reduction in T -gene expression was confirmed qualitatively by whole-mount in situ hybridization. CONCLUSIONS Prudent reference gene selection is important in evaluating relative gene expression in embryos. An experimental control design is proposed to facilitate the identification of normalizing genes that will accurately calculate relative gene expression change in treated embryos. Birth Defects Research (Part A), 2003. © 2003 Wiley-Liss, Inc. [source] FACS-array gene expression analysis during early development of mouse telencephalic interneuronsDEVELOPMENTAL NEUROBIOLOGY, Issue 4 2008Eric D. Marsh Abstract Cortical interneuron dysfunction has been implicated in multiple human disorders including forms of epilepsy, mental retardation, and autism. Although significant advances have been made, understanding the biologic basis of these disorders will require a level of anatomic, molecular, and genetic detail of interneuron development that currently does not exist. To further delineate the pathways modulating interneuron development we performed fluorescent activated cell sorting (FACs) on genetically engineered mouse embryos that selectively express green fluorescent protein (GFP) in developing interneurons followed by whole genome microarray expression profiling on the isolated cells. Bioinformatics analysis revealed expression of both predicted and unexpected genes in developing cortical interneurons. Two unanticipated pathways discovered to be up regulated prior to interneurons differentiating in the cortex were ion channels/neurotransmitters and synaptic/vesicular related genes. A significant association of neurological disease related genes to the population of developing interneurons was found. These results have defined new and potentially important data on gene expression changes during the development of cortical interneurons. In addition, these data can be mined to uncover numerous novel genes involved in the generation of interneurons and may suggest genes/pathways potentially involved in a number of human neurological disorders. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source] Time course analysis of gene expression during light-induced photoreceptor cell death and regeneration in albino zebrafishDEVELOPMENTAL NEUROBIOLOGY, Issue 8 2007Sean C. Kassen Abstract Constant intense light causes apoptosis of rod and cone photoreceptors in adult albino zebrafish. The photoreceptors subsequently regenerate from proliferating inner nuclear layer (INL) progenitor cells that migrate to the outer nuclear layer (ONL) and differentiate into rods and cones. To identify gene expression changes during this photoreceptor regeneration response, a microarray analysis was performed at five time points during the light treatment. The time course included an early time point during photoreceptor death (16 h), later time points during progenitor cell proliferation and migration (31, 51, and 68 h) and a 96 h time point, which likely corresponds to the initial photoreceptor differentiation. Mean expression values for each gene were calculated at each time point relative to the control (0 h light exposure) and statistical analysis by one-way ANOVA identified 4567 genes exhibiting significant changes in gene expression along the time course. The genes within this data set were clustered based on their temporal expression patterns and proposed functions. Quantitative real-time PCR validated the microarray expression profiles for selected genes, including stat3 whose expression increased markedly during the light exposure. Based on immunoblots, both total and activated Stat3 protein expression also increased during the light treatment. Immunolocalization of Stat3 on retinal tissue sections demonstrated increased expression in photoreceptors and Müller glia by 16 h of light exposure. Some of the Stat3-positive Müller cells expressed PCNA at 31 h, suggesting that Stat3 may play a role in signaling a subset of Müller cells to proliferate during the regeneration response. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007. [source] Proteomic analysis of liver cancer cells treated with 5-Aza-2,-deoxycytidine (AZA),DRUG DEVELOPMENT RESEARCH, Issue 1 2009Shujun Bai Abstract 5-Aza-2,-deoxycytidine (AZA) is a potent inhibitor of DNA methylation that exhibits anti-tumor activity in a variety of tumor cells via reactivation of tumor suppressor genes. However, few studies have been done on the biological and clinical significance of AZA in human hepatocellular carcinoma. To identify potential genes that may be aberrantly methylated and confer growth advantage to neoplastic cells and to better understand the molecular mechanism(s) underlying AZA anti-tumor activity, a proteomics approach was used to annotate global gene expression changes of HepG2 cell line pre- and post-treatment with AZA. A total of 56 differentially expressed proteins were identified by 2D gel analysis, 48 of which were up-regulated while the remaining 8 were down regulated. Among the identified proteins, eight of these showed marked changed proteins, including seven up-regulated proteins: glutathione S-transferase P, protein DJ-1, peroxiredoxin-2, UMP-CMP kinase, cytochrome c-type heme lyase, enhancer of rudimentary homolog, profilin-1, and one down-regulated protein, heat-shock protein ,,1. The possible implication of these proteins in hepatocarcinogenesis is discussed. We tested two up-regulated proteins, glutathione S-transferase P and peroxiredoxin-2, using RT-PCR and their expression was consistent with the results obtained in the protein level. Both of these genes were methylated when methylation-specific PCR was used against their promoter regions. Following treatment with AZA, the gene promoter regions were found to be unmethylated, concomitant with overexpression of the proteins compared to HepG2 cells without treatment. These data provide useful information in evaluating the therapeutic potential of AZA for the treatment of HCC. Drug Dev Res 69, 2009. © 2009 Wiley-Liss, Inc. [source] Analysis of genomic dose-response information on arsenic to inform key events in a mode of action for carcinogenicityENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 1 2010P. Robinan Gentry Abstract A comprehensive literature search was conducted to identify information on gene expression changes following exposures to inorganic arsenic compounds. This information was organized by compound, exposure, dose/concentration, species, tissue, and cell type. A concentration-related hierarchy of responses was observed, beginning with changes in gene/protein expression associated with adaptive responses (e.g., preinflammatory responses, delay of apoptosis). Between 0.1 and 10 ,M, additional gene/protein expression changes related to oxidative stress, proteotoxicity, inflammation, and proliferative signaling occur along with those related to DNA repair, cell cycle G2/M checkpoint control, and induction of apoptosis. At higher concentrations (10,100 ,M), changes in apoptotic genes dominate. Comparisons of primary cell results with those obtained from immortalized or tumor-derived cell lines were also evaluated to determine the extent to which similar responses are observed across cell lines. Although immortalized cells appear to respond similarly to primary cells, caution must be exercised in using gene expression data from tumor-derived cell lines, where inactivation or overexpression of key genes (e.g., p53, Bcl-2) may lead to altered genomic responses. Data from acute in vivo exposures are of limited value for evaluating the dose-response for gene expression, because of the transient, variable, and uncertain nature of tissue exposure in these studies. The available in vitro gene expression data, together with information on the metabolism and protein binding of arsenic compounds, provide evidence of a mode of action for inorganic arsenic carcinogenicity involving interactions with critical proteins, such as those involved in DNA repair, overlaid against a background of chemical stress, including proteotoxicity and depletion of nonprotein sulfhydryls. The inhibition of DNA repair under conditions of toxicity and proliferative pressure may compromise the ability of cells to maintain the integrity of their DNA. Environ. Mol. Mutagen., 2010. © 2009 Wiley-Liss, Inc. [source] Pulp and paper mill effluents induce distinct gene expression changes linked to androgenic and estrogenic responses in the fathead minnow (Pimephales promelas)ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2010Julieta Werner Abstract Although effluent treatment systems within pulp and paper mills remove many toxicants and improve wastewater quality, there is a need to understand and quantify the effectiveness of the treatment process. At a combined news and kraft pulp and paper mill in northwestern Ontario, Canada, fathead minnow (FHM) reproduction and physiology were examined before, during, and after a short-term (6-d) exposure to 10% (v/v) untreated kraft mill effluent (UTK), 25% (v/v) secondary treated kraft mill effluent (TK), and 100% (v/v) combined mill outfall (CMO). Although UTK exposure significantly decreased egg production, neither TK nor CMO caused any reproductive changes. The expression of six genes responsive to endocrine-disrupting compounds, stress, or metals was then examined in livers of these fish using real-time polymerase chain reaction. In female FHMs, none of the three effluents induced significant expression changes in any genes investigated. By contrast, in males there were significant increases in the mRNA levels of androgen receptor, estrogen receptor (ER) ,, and cytochrome P4501A (CYP1A) upon UTK and TK exposure but no changes in ER, or vitellogenin (VTG) gene expression, whereas CMO exposure significantly increased the mRNA levels of ER,, VTG, and CYP1A. Together, these results suggest that kraft effluent before and after biological treatment contained compounds able to induce androgenic effects in FHMs, and that combination of kraft and newsmill effluents eliminated the androgenic compounds while inducing distinct and significant patterns of gene expression changes that were likely due to estrogenic compounds produced by the newsmill. Environ. Toxicol. Chem. 2010;29:430,439. © 2009 SETAC [source] The mouse MPTP model: gene expression changes in dopaminergic neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2003Kati Kühn Abstract Parkinson's disease (PD) is a common neurodegenerative disorder, characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Although valuable animal models have been developed, our knowledge of the aetiology and pathogenic factors implicated in PD is still insufficient to develop causal therapeutic strategies aimed at halting its progression. The neurotoxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is one of the most valuable models for analysing pathological aspects of PD. In this paper we studied the gene expression patterns underlying the pathogenesis of MPTP-induced neurodegeneration. We treated young and old C57BL/6 mice with different schedules of MPTP to induce degenerative processes that vary in intensity and time-course. During the first week after intoxication we used nonradioactive in situ -hybridization to investigate the expression patterns of genes associated with (i) dopamine metabolism and signalling; (ii) familial forms of PD; (iii) protein folding and (iv) energy metabolism. MPTP injections induced different severities of neuronal injury depending on the age of the animals and the schedule of administration as well as a significant degeneration in the striatum. In situ hybridization showed that MPTP intoxication initiated a number of gene expression changes that (i) were restricted to the neurons of the substantia nigra pars compacta; (ii) were correlated in intensity and number of changes with the age of the animals and the severity of histopathological disturbances; (iii) displayed in each a significant down-regulation by the end of one week after the last MPTP injection, but (iv) varied within one MPTP regimen in expression levels during the observation period. The subacute injection of MPTP into one-year-old mice induced the most severe changes in gene expression. All genes investigated were affected. However, ,-synuclein was the only gene that was exclusively up-regulated in MPTP-treated animals displaying cell death. [source] Candidate glioblastoma development gene identification using concordance between copy number abnormalities and gene expression level changesGENES, CHROMOSOMES AND CANCER, Issue 10 2007Ken C. Lo Copy number abnormalities (CNAs) in tumor cells are presumed to affect expression levels of genes located in region of abnormality. To investigate this relationship we have surveyed the losses, gains and amplifications in 30 glioblastomas using array comparative genome hybridization and compared these data with gene expression changes in the same tumors using the Affymetrix U133Plus2.0 oligonucleotide arrays. The two datasets were overlaid using our in-house overlay tool which highlights concordance between CNAs and expression level changes for the same tumors. In this survey we have highlighted genes frequently overexpressed in amplified regions on chromosomes 1, 4, 11, and 12 and have identified novel amplicons on these chromosomes. Deletions of specific regions on chromosomes 9, 10, 11, 14, and 15 have also been correlated with reduced gene expression in the regions of minimal overlap. In addition we describe a novel approach for comparing gene expression levels between tumors based on the presence or absence of chromosome CNAs. This genome wide screen provides an efficient and comprehensive survey of genes which potentially serve as the drivers for the CNAs in GBM. © 2007 Wiley-Liss, Inc. [source] Gain of a region on 7p22.3, containing MAD1L1, is the most frequent event in small-cell lung cancer cell linesGENES, CHROMOSOMES AND CANCER, Issue 1 2006Bradley P. Coe Small-cell lung cancer (SCLC) is a highly aggressive lung neoplasm, which accounts for 20% of yearly lung cancer cases. The lack of knowledge of the progenitor cell type for SCLC precludes the definition of a normal gene expression profile and has hampered the identification of gene expression changes, while the low resolution of conventional genomic screens such as comparative genomic hybridization (CGH) and loss of heterozygosity analysis limit our ability to fine-map genetic alterations. The recent advent of whole genome tiling path array CGH enables profiling of segmental DNA copy number gains and losses at a resolution 100 times that of conventional methods. Here we report the analysis of 14 SCLC cell lines and six matched normal B-lymphocyte lines. We detected 7p22.3 copy number gain in 13 of the 14 SCLC lines and 0 of the 6 matched normal lines. In 4 of the 14 cell lines, this gain is present as a 350 kbp gene specific copy number gain centered at MAD1L1 (the human homologue of the yeast gene MAD1). Fluorescence in situ hybridization validated the array CGH finding. Intriguingly, MAD1L1 has been implicated to have tumor-suppressing functions. Our data suggest a more complex role for this gene, as MAD1L1 is the most frequent copy number gain in SCLC cell lines. © 2005 Wiley-Liss, Inc. [source] Malaria sporozoite antigen-directed genome-wide response in transgenic Drosophila,GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 3 2009Jizhou Yan Abstract Malaria kills a million people annually. Understanding the relationship between a causative parasite, Plasmodium falciparum, and the mosquito vector might suggest novel prevention approaches. We created and transformed into Drosophila two genes encoding, thrombospondin-related adhesive protein (TRAP) and circumsporozoite protein (CSP), found on the cell surface of Plasmodium sporozoites. To understand a model insect's response, we induced these proteins separately and together, performing whole genome microarray analysis measuring gene expression changes. Gene ontology classification of responding genes reveals that TRAP and CSP strongly and differentially influence Drosophila genes involved with cell motility and gene regulation, respectively; however, the most striking effects are on the immune system. While immune-related genes are but modestly elevated compared with responses to sepsis, there is a marked repression of the Toll pathway. This suggests: (1) how Plasmodium infection of the mosquito might use TRAP and CSP to modulate the host insect's physiology to promote sporozoite survival and transmission to man and (2) that approaches to elevate expression of the mosquito's Toll pathway might lead to novel methods of malaria prevention. genesis 47:196,203, 2009. © 2009 Wiley-Liss, Inc. [source] Gene expression characteristics of CD28null memory phenotype CD8+ T cells and its implication in T-cell agingIMMUNOLOGICAL REVIEWS, Issue 1 2005Monchou Fann Summary:, Accumulation of CD28nullCD8+ T cells is considered as one of the hallmarks of aging in the human immune system. However, the precise changes of CD28nullCD8+ T cells, compared to those of the precursor CD28+CD8+ memory T cells, have not been determined. In this study, we present an analysis of the global gene expression profiles of CD28+ and CD28null memory phenotype CD8+ T cells. These two CD8+ T subsets exhibited an overall similar gene expression profile with only a few dozen genes that were differentially expressed. A wide range of functions, including co-stimulation, effector activity, signaling, and transcription, were possessed by these differentially expressed genes, reflecting significant functional changes of CD28null memory phenotype CD8+ T cells from their CD28+ counterparts. In addition, CD28null memory CD8+ T cells expressed several natural killer cell receptors and high levels of granzymes, perforin, and FasL, indicating an increasing capacity for cytotoxicity during memory CD8+ T-cell aging. Interestingly, in vitro culture of these two subsets with interleukin-15 showed that similar gene expression changes occurred in both subsets. Our analysis provides the gene expression portraits of CD28null memory phenotype CD8+ T cells and alteration from their CD28+ counterparts and suggests potential mechanisms of T-cell aging. [source] Transcriptional signatures in response to wheat germ agglutinin and starvation in Drosophila melanogaster larval midgutINSECT MOLECULAR BIOLOGY, Issue 1 2009H.-M. Li Abstract One function of plant lectins such as wheat germ agglutinin is to serve as defences against herbivorous insects. The midgut is one critical site affected by dietary lectins. We observed marked cellular, structural and gene expression changes in the midguts of Drosophila melanogaster third instar larvae that were fed wheat germ agglutinin. Some of these changes were similar to those observed in the midguts of starved D. melanogaster. Dietary wheat germ agglutinin caused shortening, branching, swelling, distortion and in some cases disintegration of the midgut microvilli. Starvation was accompanied primarily by shortening of the microvilli. Microarray analyses revealed that dietary wheat germ agglutinin evoked differential expression of 61 transcripts; seven of these were also differentially expressed in starved D. melanogaster. The differentially transcribed gene clusters in wheat germ agglutinin-fed larvae were associated with (1) cytoskeleton organization; (2) digestive enzymes; (3) detoxification reactions; and (4) energy metabolism. Four possible transcription factor binding motifs were associated with the differentially expressed genes. One of these exhibited substantial similarity to MyoD, a transcription factor binding motif associated with cellular structures in mammals. These results are consistent with the hypothesis that wheat germ agglutinin caused a starvation-like effect and structural changes of midgut cells of D. melanogaster third-instar larvae. [source] Analysis of gene expression profiles in human HL-60 cell exposed to cantharidin using cDNA microarrayINTERNATIONAL JOURNAL OF CANCER, Issue 2 2004Jun-Ping Zhang Abstract Cantharidin is a natural toxin that has antitumor properties and causes leukocytosis as well as increasing sensitivity of tumor cells resistant to other chemotherapeutic agents. There is limited information, however, on the molecular pharmacological mechanisms of cantharidin on human cancer cells. We have used cDNA microarrays to identify gene expression changes in HL-60 promyeloid leukemia cells exposed to cantharidin. Cantharidin-treated cells not only decreased expression of genes coding for proteins involved in DNA replication (e.g., DNA polymerase delta), DNA repair (e.g., FANCG, ERCC), energy metabolism (e.g., isocitrate dehydrogenase alpha, ADP/ATP translocase), but also decreased expression of genes coding for proteins that have oncogenic activity (e.g., c-myc, GTPase) or show tumor-specific expression (e.g., phosphatidylinositol 3-kinase). In contrast, these treated cells overexpressed several genes that encode intracellular and secreted growth-inhibitory proteins (e.g., BTG2, MCP-3) as well as proapoptotic genes (e.g., ATL-derived PMA-responsive peptide). Our findings suggest that alterations in specific genes functionally related to cell proliferation or apoptosis may be responsible for cantharidin-mediated cytotoxicity. We also found that exposure of HL-60 cells to cantharidin resulted in the decreased expression of multidrug resistance-associated protein genes (e.g., ABCA3, MOAT-B), suggesting that cantharidin may be used as an oncotherapy sensitizer, and the increased expression of genes in modulating cytokine production and inflammatory response (e.g., NFIL-3, N-formylpeptide receptor), which may partly explain the stimulating effects on leukocytosis. Our data provide new insight into the molecular mechanisms of cantharidin. © 2003 Wiley-Liss, Inc. [source] Tissue-specific dysregulation of DNA methylation in agingAGING CELL, Issue 4 2010Reid F. Thompson Summary The normal aging process is a complex phenomenon associated with physiological alterations in the function of cells and organs over time. Although an attractive candidate for mediating transcriptional dysregulation, the contribution of epigenetic dysregulation to these progressive changes in cellular physiology remains unclear. In this study, we employed the genome-wide HpaII tiny fragment enrichment by ligation-mediated PCR assay to define patterns of cytosine methylation throughout the rat genome and the luminometric methylation analysis assay to measure global levels of DNA methylation in the same samples. We studied both liver and visceral adipose tissues and demonstrated significant differences in DNA methylation with age at > 5% of sites analyzed. Furthermore, we showed that epigenetic dysregulation with age is a highly tissue-dependent phenomenon. The most distinctive loci were located at intergenic sequences and conserved noncoding elements, and not at promoters nor at CG-dinucleotide-dense loci. Despite this, we found that there was a subset of genes at which cytosine methylation and gene expression changes were concordant. Finally, we demonstrated that changes in methylation occur consistently near genes that are involved in metabolism and metabolic regulation, implicating their potential role in the pathogenesis of age-related diseases. We conclude that different patterns of epigenetic dysregulation occur in each tissue over time and may cause some of the physiological changes associated with normal aging. [source] Declining expression of a single epithelial cell-autonomous gene accelerates age-related thymic involutionAGING CELL, Issue 3 2010Liguang Sun Summary Age-related thymic involution may be triggered by gene expression changes in lymphohematopoietic and/or nonhematopoietic thymic epithelial cells (TECs). The role of epithelial cell-autonomous gene FoxN1 may be involved in the process, but it is still a puzzle because of the shortage of evidence from gradual loss-of-function and exogenous gain-of-function studies. Using our recently generated loxP -floxed- FoxN1(fx) mouse carrying the ubiquitous CreERT (uCreERT) transgene with a low dose of spontaneous activation, which causes gradual FoxN1 deletion with age, we found that the uCreERT -fx/fx mice showed an accelerated age-related thymic involution owing to progressive loss of FoxN1+ TECs. The thymic aging phenotypes were clearly observable as early as at 3,6 months of age, resembling the naturally aged (18,22-month-old) murine thymus. By intrathymically supplying aged wild-type mice with exogenous FoxN1-cDNA, thymic involution and defective peripheral CD4+ T-cell function could be partially rescued. The results support the notion that decline of a single epithelial cell-autonomous gene FoxN1 levels with age causes primary deterioration in TECs followed by impairment of the total postnatal thymic microenvironment, and potentially triggers age-related thymic involution in mice. [source] Age-related alterations of gene expression patterns in human CD8+ T cellsAGING CELL, Issue 1 2010Jia-Ning Cao Summary Aging is associated with progressive T-cell deficiency and increased incidence of infections, cancer and autoimmunity. In this comprehensive study, we have compared the gene expression profiles in CD8+ T cells from aged and young healthy subjects using Affymetrix microarray Human Genome U133A-2 GeneChips. A total of 5.2% (754) of the genes analyzed had known functions and displayed statistically significant age-associated expression changes. These genes were involved in a broad array of complex biological processes, mainly in nucleic acid and protein metabolism. Functional groups, in which down-regulated genes were overrepresented, were the following: RNA transcription regulation, RNA and DNA metabolism, intracellular (Golgi, endoplasmic reticulum and nuclear) transportation, signaling transduction pathways (T-cell receptor, Ras/MAPK, JNK/Stat, PI3/AKT, Wnt, TGF,, insulin-like growth factor and insulin), and the ubiquitin cycle. In contrast, the following functional groups contained more up-regulated genes than expected: response to oxidative stress and cytokines, apoptosis, and the MAPKK signaling cascade. These age-associated gene expression changes may be responsible for impaired DNA replication, RNA transcription, and signal transduction, possibly resulting in instability of cellular and genomic integrity, and alterations of growth, differentiation, apoptosis and anergy in human aged CD8+ T cells. [source] c-DNA Microarray to determine molecular events in neurodegeneration and neuroprotectionJOURNAL OF NEUROCHEMISTRY, Issue 2002M. B. H. Youdim Cell death in CNS involves complex processes, many of which have not been identified biochemically. At the present biochemical techniques cannot adequately establish these. However, the advent of cDNA microarray or microchips, in which the expression of thousands of genes can be measured at once to give a global assessment in disease pathology, its progress or animal models, has simplified this. We have employed this technique to study the mechanism of neurotoxicity of MPTP and 6-hydroxydoapmine induced in neuronally derived cells in culture, in the animal models of Parkinson's disease and neuroprotection initiated by monoamine oxidase B inhibitor, rasagiline; iron chelators, R-apomorphine and EGCG and other neuroprotective drugs. Our studies have clearly indicated that MPTP induced early gene expression, prior to cell death (first 24 h), are prerequirement for 51 late gene expression changes implicated at the time of neuronal death. The latter genes include those involved in iron metabolism, oxidative stress, inflammatory processes, glutaminergic excitotoxicity, nitric oxide, growth factors, transcription factors, cell cycle, intermediatory metabolism and other gene previously not identified. The expressions of many of the latter genes, also identified by in situ hybridization, are prevented when the animals are pretreated with the above neuroprotective drugs. These studies have clearly shown that neurodegeneratrion is a complex cascades of ,domino' effect. Thus a single neuroprotective drug treatment may not be adequate to prevent it, but, that a cocktail of drugs might. [source] Acute Activation of Hippocampal Glucocorticoid Receptors Results in Different Waves of Gene Expression Throughout TimeJOURNAL OF NEUROENDOCRINOLOGY, Issue 4 2006M. C. Morsink Abstract Several aspects of hippocampal cell function are influenced by adrenal-secreted glucocorticoids in a delayed, genomic fashion. Previously, we used Serial Analysis of Gene Expression to identify glucocorticoid receptor (GR)-induced transcriptional changes in the hippocampus at a fixed time point. However, because changes in mRNA levels are transient and most likely precede the effects on hippocampal cell function, the aim of the current study was to assess the transcriptional changes in a broader time window by generating a time curve of GR-mediated gene expression changes. Therefore, we used rat hippocampal slices obtained from adrenalectomised rats, substituted in vivo with low corticosterone pellets, predominantly occupying the hippocampal mineralocorticoid receptors. To activate GR, slices were treated in vitro with a high (100 nM) dose of corticosterone and gene expression was profiled 1, 3 and 5 h after GR-activation. Using Affymetrix GeneChips, a striking pattern with different waves of gene expression was observed, shifting from exclusively down-regulated genes 1 h after GR-activation to both up and down regulated genes 3 h after GR-activation. After 5 h, the response was almost back to baseline. Additionally, real-time quantitative polymerase chain reaction was used for validation of a selection of responsive genes including genes involved in neurotransmission and synaptic plasticity such as the corticotropin releasing hormone receptor 1, monoamine oxidase A, LIMK1 and calmodulin 2. This permitted confirmation of GR-responsiveness of 15 out of 18 selected genes. In conclusion, direct activation of GR in hippocampal slices results in transient changes in gene expression. The pattern in which gene expression was modulated suggests that the fast genomic effects of glucocorticoids may be realised via transrepression, preceding a later wave of transactivation. Furthermore, we identified a number of interesting candidate genes which may underlie the glucocorticoid-mediated effects on hippocampal cell function. [source] Changes in gene expression of individual matrix metalloproteinases differ in response to mechanical unloading of tendon fascicles in explant cultureJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 10 2008Diane R. Leigh Abstract Immobilization of the tendon and ligament has been shown to result in a rapid and significant decrease in material properties. It has been proposed that tissue degradation leading to tendon rupture or pain in humans may also be linked to mechanical unloading following focal tendon injury. Hence, understanding the remodeling mechanism associated with mechanical unloading has relevance for the human conditions of immobilization (e.g., casting), delayed repair of tendon ruptures, and potentially overuse injuries as well. This is the first study to investigate the time course of gene expression changes associated with tissue harvest and mechanical unloading culture in an explant model. Rat tail tendon fascicles were harvested and placed in culture unloaded for up to 48 h and then evaluated using qRT-PCR for changes in two anabolic and four catabolic genes at 12 time points. Our data demonstrates that Type I Collagen, Decorin, Cathepsin K, and MMP2 gene expression are relatively insensitive to unloaded culture conditions. However, changes in both MMP3 and MMP13 gene expression are rapid, dramatic, sustained, and changing during at least the first 48 h of unloaded culture. This data will help to further elucidate the mechanism for the loss of mechanical properties associated with mechanical unloading in tendon. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:1306,1312, 2008 [source] Regulation of oxidative-stress responsive genes by arecoline in human keratinocytesJOURNAL OF PERIODONTAL RESEARCH, Issue 5 2009G. S. Thangjam Background and Objective:, Arecoline, an arecanut alkaloid present in the saliva of betel quid chewers, has been implicated in the pathogenesis of a variety of inflammatory oral diseases, including oral submucous fibrosis and periodontitis. To understand the molecular basis of arecoline action in epithelial changes associated with these diseases, we investigated the effects of arecoline on human keratinocytes with respect to cell growth regulation and the expression of stress-responsive genes. Material and Methods:, Human keratinocyte cells (of the HaCaT cell line) were treated with arecoline, following which cell viability was assessed using the Trypan Blue dye-exclusion assay, cell growth and proliferation were analyzed using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) and 5-bromo-2-deoxyuridine incorporation assays, cell cycle arrest and generation of reactive oxygen species were examined using flow cytometry, and gene expression changes were investigated using the reverse transcription,polymerase chain reaction technique. The role of oxidative stress, muscarinic acetylcholine receptor and mitogen-activated protein kinase (MAPK) pathways were studied using specific inhibitors. Western blot analysis was performed to study p38 MAPK activation. Results:, Arecoline induced the generation of reactive oxygen species and cell cycle arrest at the G1/G0 phase in HaCaT cells without affecting the expression of p21/Cip1. Arecoline-induced epithelial cell death at higher concentrations was caused by oxidative trauma without eliciting apoptosis. Sublethal concentrations of arecoline upregulated the expression of the following stress-responsive genes: heme oxygenase-1; ferritin light chain; glucose-6-phosphate dehydrogenase; glutamate-cysteine ligase catalytic subunit; and glutathione reductase. Additionally, there was a dose-dependent induction of interleukin-1alfa mRNA by arecoline via oxidative stress and p38 MAPK activation. Conclusion:, Our data highlight the role of oxidative stress in arecoline-mediated cell death, gene regulation and inflammatory processes in human keratinocytes. [source] Ethanol-Regulated Genes That Contribute to Ethanol Sensitivity and Rapid Tolerance in DrosophilaALCOHOLISM, Issue 2 2010Eric C. Kong Background:, Increased ethanol intake, a major predictor for the development of alcohol use disorders, is facilitated by the development of tolerance to both the aversive and pleasurable effects of the drug. The molecular mechanisms underlying ethanol tolerance development are complex and are not yet well understood. Methods:, To identify genetic mechanisms that contribute to ethanol tolerance, we examined the time course of gene expression changes elicited by a single sedating dose of ethanol in Drosophila, and completed a behavioral survey of strains harboring mutations in ethanol-regulated genes. Results:, Enrichment for genes in metabolism, nucleic acid binding, olfaction, regulation of signal transduction, and stress suggests that these biological processes are coordinately affected by ethanol exposure. We also detected a coordinate up-regulation of genes in the Toll and Imd innate immunity signal transduction pathways. A multi-study comparison revealed a small set of genes showing similar regulation, including increased expression of 3 genes for serine biosynthesis. A survey of Drosophila strains harboring mutations in ethanol-regulated genes for ethanol sensitivity and tolerance phenotypes revealed roles for serine biosynthesis, olfaction, transcriptional regulation, immunity, and metabolism. Flies harboring deletions of the genes encoding the olfactory co-receptor Or83b or the sirtuin Sir2 showed marked changes in the development of ethanol tolerance. Conclusions:, Our findings implicate novel roles for these genes in regulating ethanol behavioral responses. [source] Maturation-Dependent Alcohol Resistance in the Developing Mouse: Cerebellar Neuronal Loss and Gene Expression During Alcohol-Vulnerable and -Resistant PeriodsALCOHOLISM, Issue 8 2008Bahri Karaçay Background:, Alcohol abuse during pregnancy injures the fetal brain. One of alcohol's most important neuroteratogenic effects is neuronal loss. Rat models have shown that the cerebellum becomes less vulnerable to alcohol-induced neuronal death as it matures. We determined if maturation-dependent alcohol resistance occurs in mice and compared patterns of gene expression during the alcohol resistant and sensitive periods. Methods:, Neonatal mice received alcohol daily over postnatal day (PD) 2 to 4 or PD8 to 10. Purkinje cells and granule cells were quantified on PD25. The temporal expression patterns of 4 neuro-developmental genes and 3 neuro-protective genes in the cerebellum were determined daily over PD0 to 15 to determine how gene expression changes as the cerebellum transitions from alcohol-vulnerable to alcohol-resistant. The effect of alcohol on expression of these genes was determined when the cerebellum is alcohol sensitive (PD4) and resistant (PD10). Results:, Purkinje and granule cells were vulnerable to alcohol-induced death at PD2 to 4, but not at PD8 to 10. Acquisition of maturation-dependent alcohol resistance coincided with changes in the expression of neurodevelopmental genes. The vulnerability of cerebellar neurons to alcohol toxicity declined in parallel with decreasing levels of Math1 and Cyclin D2, markers of immature granule cells. Likewise, the rising resistance to alcohol toxicity paralleled increasing levels of GABA ,-6 and Wnt-7a, markers of mature granule neurons. Expression of growth factors and genes with survival promoting function (IGF-1, BDNF, and cyclic AMP response element binding protein) did not rise as the cerebellum transitioned from alcohol-vulnerable to alcohol-resistant. All 3 were expressed at substantial levels during the vulnerable period and were not expressed at higher levels later. Acute alcohol exposure altered the expression of neurodevelopmental genes and growth factor genes when administered either during the alcohol vulnerable period or resistant period. However, the patterns in which gene expression changed varied among the genes and depended on timing of alcohol administration. Conclusions:, Mice have a temporal window of vulnerability in the first week of life, during which cerebellar neurons are more sensitive to alcohol toxicity than during the second week. Expression of genes governing neuronal maturation changes in synchrony with the acquisition of alcohol resistance. Growth factors do not rise as the cerebellum transitions from alcohol-vulnerable to alcohol-resistant. Thus, a process intrinsic to neuronal maturation, rather than rising levels of growth factors, likely underlies maturation-dependent alcohol resistance. [source] Molecular and Cellular Events in Alcohol-Induced Muscle DiseaseALCOHOLISM, Issue 12 2007Joaquim Fernandez-Solà Alcohol consumption induces a dose-dependent noxious effect on skeletal muscle, leading to progressive functional and structural damage of myocytes, with concomitant reductions in lean body mass. Nearly half of high-dose chronic alcohol consumers develop alcoholic skeletal myopathy. The pathogenic mechanisms that lie between alcohol intake and loss of muscle tissue involve multiple pathways, making the elucidation of the disease somewhat difficult. This review discusses the recent advances in basic and clinical research on the molecular and cellular events involved in the development of alcohol-induced muscle disease. The main areas of recent research interest on this field are as follows: (i) molecular mechanisms in alcohol exposed muscle in the rat model; (ii) gene expression changes in alcohol exposed muscle; (iii) the role of trace elements and oxidative stress in alcoholic myopathy; and (iv) the role of apoptosis and preapoptotic pathways in alcoholic myopathy. These aforementioned areas are crucial in understanding the pathogenesis of this disease. For example, there is overwhelming evidence that both chronic alcohol ingestion and acute alcohol intoxication impair the rate of protein synthesis of myofibrillar proteins, in particular, under both postabsorptive and postprandial conditions. Perturbations in gene expression are contributory factors to the development of alcoholic myopathy, as ethanol-induced alterations are detected in over 400 genes and the protein profile (i.e., the proteome) of muscle is also affected. There is supportive evidence that oxidative damage is involved in the pathogenesis of alcoholic myopathy. Increased lipid peroxidation is related to muscle fibre atrophy, and reduced serum levels of some antioxidants may be related to loss of muscle mass and muscle strength. Finally, ethanol induces skeletal muscle apoptosis and increases both pro- and antiapoptotic regulatory mechanisms. [source] |