Gene Dispersal (gene + dispersal)

Distribution by Scientific Domains


Selected Abstracts


DISPERSAL, PHILOPATRY, AND INFIDELITY: DISSECTING LOCAL GENETIC SWTRUCTURE IN SUPERB FAIRY-WRENS (MALURS CYANEUS)

EVOLUTION, Issue 3 2005
M. C. Double
Abstract Dispersal influences evolution, demography, and social characteristics but is generally difficult to study. Here we combine long-term demographic data from an intensively studied population of superb fairy-wrens(Malurus cyaneus) and multivariate spatial autocorrelation analyses of microsatellite genotypes to describe dispersal behavior in this species. The demographic data revealed: (1) sex-biased dispersal: almost all individuals that dispersed into the study area over an eight-year period were female (93%; n 5 153); (2) high rates of extragroup infidelity (66% of offspring), which also facilitated local gene dispersal; and (3) skewed lifetime reproductive success in both males and females. These data led to three expectations concerning the patterns of fine-scale genetic structure: (1) little or no spatial genetic autocorrelation among females, (2) positive spatial genetic autocorrelation among males, and (3) a heterogeneous genetic landscape. Global autocorrelation analysis of the genotypes present in the study population confirmed the first two expectations. A novel two-dimensional local autocorrelation analysis confirmed the third and provided new insight into the patterns of genetic structure across the two-dimensional landscape. We highlight the potential of autocorrelation analysis to infer evolutionary processes but also emphasize that genetic patterns in space cannot be fully understood without an appropriate and intensive sampling regime and detailed knowledge of the individuals genotyped. [source]


OUTBREEDING DEPRESSION VARIES AMONG COHORTS OF IPOMOPSIS AGGREGATA PLANTED IN NATURE

EVOLUTION, Issue 2 2000
Nickolas M. Waser
Abstract., Outbreeding depression in progeny fitness may arise from disruption of local adaptation, disruption of allelic coadaptation, or a combination of these "environmental" and "physiological" mechanisms. Thus the minimum spatial scale over which outbreeding depression arises should depend on the spatial scale of gene dispersal and (with an environmental mechanism) of change in selection regimes. We previously reported substantial outbreeding depression in lifetime fitness of progeny resulting from crosses among parents separated by 100 m in natural populations of the herbaceous plant Ipomopsis aggregata. In this paper we explore the effect of crossing distance on fitness in two additional experiments begun in 1987 and 1990. We planted seed progeny derived from partial diallel crossing designs in randomized blocks in maternal environments and scored emergence of seedlings, survival, and eventual flowering of individuals over the subsequent six to eight years. Nested within each diallel design were crossing distances of 1 m, 10 m, and 100 m. Compared to 1-m and 10-m progeny, 100-m progeny of the 1987 diallel suffered a significant reduction in seedling emergence, and both 1-m and 100-m progeny that survived to flower achieved lower ,-values on average than 10-m progeny. Total outbreeding depression suffered by 100-m relative to 10-m progeny was approximately 10%, compared to approximately 30% in our earlier study of I. aggregata. Progeny of 10-m crosses also outperformed 1-m and 100-m progeny of the 1990 diallel by approximately 5%, but no difference among crossing distance treatments was significant. Thus, the magnitude of outbreeding depression in 100-m crosses varied among experiments. This is not surprising given likely spatial and temporal variation in gene flow and selection regimes, different population histories, and different parental and progeny environments. Characterizing outbreeding depression on the shortest spatial scales over which it is expressed, as well as its variation and causes, is worthwhile because it promises to shed light on the earliest stages of angiosperm speciation. [source]


The influence of pollinator abundance on the dynamics and efficiency of pollination in agricultural Brassica napus: implications for landscape-scale gene dispersal

JOURNAL OF APPLIED ECOLOGY, Issue 6 2006
KATRINA E. HAYTER
Summary 1It is important to understand the pollination processes that generate landscape-scale gene dispersal in plants, particularly in crop plants with genetically modified (GM) varieties. In one such crop, Brassica napus, the situation is complicated by uncertainty over the relative importance of two pollen vectors, wind and insects. 2We investigated pollination in two fields of B. napus that bloomed at different times of year (April vs. July) and attracted different abundances of foraging social bees. Rates of pollen transfer were quantified by counting the pollen grains deposited on stigmas and remaining in the anthers at intervals after flower opening. 3Flowers open in April were adequately pollinated only after 5 days and only 10% received even a single bee visit. Flowers open in July received three bee visits per hour and were fully pollinated within 3 h. 4Based on published measurements of airborne pollen dispersal, we estimate that wind-pollination from a hypothetical field 1 km distant could have fertilized up to 0·3% of the field's seed when bees were scarce in April but only up to 0·007% when bees were abundant in July. 5The efficiency of pollination (the proportion of pollen released from anthers that landed on receptive stigmas) was seven times greater in July (1·5%) than in April (0·2%). The relatively high efficiency of insect pollination may help to explain the evolutionary maintenance of entomophily. 6Synthesis and applications. Our results begin to resolve a long-standing inconsistency among previous studies by suggesting that the susceptibility of fields of B. napus to long-distance cross-pollination by wind depends on the level of bee activity. Models for predicting GM gene flow at the landscape-scale in this crop should take this into account. [source]


Effective gene dispersal and female reproductive success in Mediterranean maritime pine (Pinus pinaster Aiton)

MOLECULAR ECOLOGY, Issue 14 2006
SANTIAGO C. GONZÁLEZ-MARTÍNEZ
Abstract Understanding population-scale processes that affect allele frequency changes across generations is a long-standing interest in genetic, ecological and evolutionary research. In particular, individual differences in female reproductive success and the spatial scale of gene flow considerably affect evolutionary change and patterns of local selection. In this study, a recently developed maximum-likelihood (ML) method based on established offspring, the Seedling Neighbourhood Model, was applied and exponentially shaped dispersal kernels were fitted to both genetic and ecological data in a widespread Mediterranean pine, Pinus pinaster Aiton. The distribution of female reproductive success in P. pinaster was very skewed (about 10% of trees mothered 50% of offspring) and significant positive female selection gradients for diameter (, = 0.7293) and cone crop (, = 0.4524) were found. The selective advantage of offspring mothered by bigger trees could be due to better-quality seeds. These seeds may show more resilience to severe summer droughts and microsite variation related to water and nutrient availability. Both approaches, ecological and of parentage, consistently showed a long-distance dispersal component in saplings that was not found in dispersal kernels based on seed shadows, highlighting the importance of Janzen-Connell effects and microenvironmental variation for survival at early stages of establishment in this Mediterranean key forest tree. [source]


Comparative analysis of the within-population genetic structure in wild cherry (Prunus avium L.) at the self-incompatibility locus and nuclear microsatellites

MOLECULAR ECOLOGY, Issue 11 2006
SILVIO SCHUELER
Abstract Gametophytic self-incompatibility (SI) systems in plants exhibit high polymorphism at the SI controlling S -locus because individuals with rare alleles have a higher probability to successfully pollinate other plants than individuals with more frequent alleles. This process, referred to as frequency-dependent selection, is expected to shape number, frequency distribution, and spatial distribution of self-incompatibility alleles in natural populations. We investigated the genetic diversity and the spatial genetic structure within a Prunus avium population at two contrasting gene loci: nuclear microsatellites and the S -locus. The S -locus revealed a higher diversity (15 alleles) than the eight microsatellites (4,12 alleles). Although the frequency distribution of S -alleles differed significantly from the expected equal distribution, the S -locus showed a higher evenness than the microsatellites (Shannon's evenness index for the S -locus: E = 0.91; for the microsatellites: E = 0.48,0.83). Also, highly significant deviations from neutrality were found for the S -locus whereas only minor deviations were found for two of eight microsatellites. A comparison of the frequency distribution of S -alleles in three age-cohorts revealed no significant differences, suggesting that different levels of selection acting on the S -locus or on S- linked sites might also affect the distribution and dynamics of S -alleles. Autocorrelation analysis revealed a weak but significant spatial genetic structure for the multilocus average of the microsatellites and for the S -locus, but could not ascertain differences in the extent of spatial genetic structure between these locus types. An indirect estimate of gene dispersal, which was obtained to explain this spatial genetic pattern, indicated high levels of gene dispersal within our population (,g = 106 m). This high gene dispersal, which may be partly due to the self-incompatibility system itself, aids the effective gene flow of the microsatellites, thereby decreasing the contrast between the neutral microsatellites and the S -locus. [source]


Inferring colonization history from analyses of spatial genetic structure within populations of Pinus strobus and Quercus rubra

MOLECULAR ECOLOGY, Issue 3 2006
F. A. JONES
Abstract Many factors interact to determine genetic structure within populations including adult density, the mating system, colonization history, natural selection, and the mechanism and spatial patterns of gene dispersal. We examined spatial genetic structure within colonizing populations of Quercus rubra seedlings and Pinus strobus juveniles and adults in an aspen,white pine forest in northern Michigan, USA. A 20-year spatially explicit demographic study of the forest enables us to interpret the results in light of recent colonization of the site for both species. We assayed 217 Q. rubra seedlings and 171 P. strobus individuals at 11 polymorphic loci using nine allozyme systems. Plant genotypes and locations were used in an analysis of spatial genetic structure. Q. rubra and P. strobus showed similar observed levels of heterozygosity, but Q. rubra seedlings have less heterozygosity than expected. Q. rubra seedlings show spatial genetic clumping of individuals on a scale to 25 m and levels of genetic relatedness expected from the clumped dispersion of half-siblings. In contrast, P. strobus has low levels of genetic relatedness at the smallest distance class and positive spatial genetic structure at scales < 10 m within the plot. The low density of adult Q. rubra outside the study plot and limited, spatially clumped rodent dispersal of acorns is likely responsible for the observed pattern of spatial genetic structure and the observed heterozygote deficit (i.e. a Wahlund effect). We attribute weaker patterns observed in P. strobus to the longer dispersal distance of seeds and the historical overlap of seed shadows from adults outside of the plot coupled with the overlap of seed shadows from younger, more recently established reproductive adults. The study demonstrates the utility of long-term demographic data in interpreting mechanisms responsible for generating contemporary patterns of genetic structure within populations. [source]


Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree species

MOLECULAR ECOLOGY, Issue 2 2006
OLIVIER J. HARDY
Abstract The extent of gene dispersal is a fundamental factor of the population and evolutionary dynamics of tropical tree species, but directly monitoring seed and pollen movement is a difficult task. However, indirect estimates of historical gene dispersal can be obtained from the fine-scale spatial genetic structure of populations at drift,dispersal equilibrium. Using an approach that is based on the slope of the regression of pairwise kinship coefficients on spatial distance and estimates of the effective population density, we compare indirect gene dispersal estimates of sympatric populations of 10 tropical tree species. We re-analysed 26 data sets consisting of mapped allozyme, SSR (simple sequence repeat), RAPD (random amplified polymorphic DNA) or AFLP (amplified fragment length polymorphism) genotypes from two rainforest sites in French Guiana. Gene dispersal estimates were obtained for at least one marker in each species, although the estimation procedure failed under insufficient marker polymorphism, limited sample size, or inappropriate sampling area. Estimates generally suffered low precision and were affected by assumptions regarding the effective population density. Averaging estimates over data sets, the extent of gene dispersal ranged from 150 m to 1200 m according to species. Smaller gene dispersal estimates were obtained in species with heavy diaspores, which are presumably not well dispersed, and in populations with high local adult density. We suggest that limited seed dispersal could indirectly limit effective pollen dispersal by creating higher local tree densities, thereby increasing the positive correlation between pollen and seed dispersal distances. We discuss the potential and limitations of our indirect estimation procedure and suggest guidelines for future studies. [source]


Genetic structure of the endangered perennial plant Eryngium alpinum (Apiaceae) in an alpine valley

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2008
MYRIAM GAUDEUL
We investigated the genetic structure of Eryngium alpinum (Apiaceae) in an Alpine valley where the plant occurs in patches of various sizes. In a conservation perspective, our goal was to determine whether the valley consists of one or several genetic units. Habitat fragmentation and previous observations of restricted pollen/seed dispersal suggested pronounced genetic structure, but gene dispersal often follows a leptokurtic distribution, which may lead to weak genetic structure. We used nine microsatellite loci and two nested sampling designs (50 × 50 m grid throughout the valley and 2 × 2 m grid in two 50 × 10 m quadrats). Within the overall valley, F -statistics and Bayesian approaches indicated high genetic homogeneity. This result might be explained by: (1) underestimation of long-distance pollen/seed dispersal by in situ experiments and (2) too recent fragmentation events to build up genetic structure. Spatial autocorrelation revealed isolation by distance on the overall valley but this pattern was much more pronounced in the 50 × 10 m quadrats sampled with a 2-m mesh. This was probably associated with limited primary seed dispersal, leading to the spatial clustering of half-sibs around maternal plants. We emphasize the interest of nested sampling designs and of combining several statistical tools. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 93, 667,677. [source]