Home About us Contact | |||
Gene Delivery Vehicles (gene + delivery_vehicle)
Selected AbstractsCytoprotection of beta cells: rational gene transfer strategiesDIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 3 2006Cillian McCabe Abstract Gene transfer to pancreatic islets may prove useful in preventing islet cell destruction and prolonging islet graft survival after transplantation in patients with type 1 diabetes mellitus (T1DM). Potentially, a host of therapeutically relevant transgenes may be incorporated into an appropriate gene delivery vehicle and used for islet modification. An increasing understanding of the molecular pathogenesis of immune-mediated beta cell death has served to highlight molecules which have become suitable candidates for promoting islet cell survival in the face of oxidative stress. This review aims to give an overview of some conventional gene transfer strategies aimed at promoting islet cell survival in the face of cytokine onslaught. These strategies target three aspects of islet cell physiology: redox status and antioxidant defence, anti-apoptotic gene expression and mediators of cytokine signal transduction pathways. Copyright © 2006 John Wiley & Sons, Ltd. [source] The use of bacterial minicells to transfer plasmid DNA to eukaryotic cellsCELLULAR MICROBIOLOGY, Issue 10 2006Matthew J. Giacalone Summary The delivery of DNA to mammalian cells is of critical importance to the development of genetic vaccines, gene replacement therapies and gene silencing. For these applications, targeting, effective DNA transfer and vector safety are the major roadblocks in furthering development. In this report, we present a novel DNA delivery vehicle that makes use of protoplasted, achromosomal bacterial minicells. Transfer of plasmid DNA as measured by green fluorescent protein expression was found to occur in as high as 25% of cultured Cos-7 cells when a novel chimeric protein containing the D2,D5 region of invasin was expressed and displayed on the surface of protoplasted minicells. Based on endoplasmic reticulum stress and other responses, protoplasted minicells were non-toxic to recipient eukaryotic cells as a consequence of the transfection process. Taken together, these results suggest that bacterial minicells may represent a novel and promising gene delivery vehicle. [source] Adenoviral vectors for gene transfer and therapyTHE JOURNAL OF GENE MEDICINE, Issue S1 2004Christoph Volpers Abstract Due to the very efficient nuclear entry mechanism of adenovirus and its low pathogenicity for humans, adenovirus-based vectors have become gene delivery vehicles that are widely used for transduction of different cell types, especially for quiescent, differentiated cells, in basic research, in gene therapy applications, and in vaccine development. As an important basis for their use as gene medicine, adenoviral vectors can be produced in high titers, they can transduce cells in vivo with transgenes of more than 30 kb, and they do not integrate into the host cell genome. Recent advances in the development of adenoviral vectors have brought considerable progress on issues like target cell specificity and tropism modification, long-term expression of the transgene, as well as immunogenicity and toxicity in vivo, and have suggested that the different generations of non-replicative and replicative vectors available today will each suit best for certain applications. Copyright © 2004 John Wiley & Sons, Ltd. [source] Scalable production of adeno-associated virus type 2 vectors via suspension transfection,BIOTECHNOLOGY & BIOENGINEERING, Issue 3 2006Joon Young Park Abstract Vectors derived from adeno-associated virus type 2 (AAV2) are promising gene delivery vehicles, but it is still challenging to get the large number of recombinant adeno-associated virus (rAAV) particles required for large animal and clinical studies. Current transfection technology requires adherent cultures of HEK 293 cells that can only be expanded by preparing multiple culture plates. A single large-scale suspension culture could replace these multiple culture preparations, but there is currently no effective co-transfection scheme for generating rAAV from cells in suspension culture. Here, we weaned HEK 293 cells to suspension culture using hydrogel-coated six-well culture plates and established an efficient transfection strategy suitable for these cells. Then the cultures were gradually scaled up. We used linear polyethylenimine (PEI) to mediate transfection and obtained high transfection efficiencies ranging from 54% to 99%, thereby allowing efficient generation of rAAV vectors. Up to 1013 rAAV particles and, more importantly, up to 1011 infectious particles were generated from a 2-L bioreactor culture. The suspension-transfection strategy of this study facilitates the homogeneous preparation of rAAV at a large scale, and holds further potential as the basis for establishing a manufacturing process in a larger bioreactor. © 2006 Wiley Periodicals, Inc. [source] Synthesis and Properties of DNA Complexes Containing 2,2,6,6-Tetramethyl-1-piperidinoxy (TEMPO) Moieties as Organic Radical Battery MaterialsCHEMISTRY - A EUROPEAN JOURNAL, Issue 11 2008Jinqing Qu Dr. Abstract We report here the first example of organic radical battery with DNA. Though there is a growing interest in DNA/cationic-lipid complexes as promising gene delivery vehicles, few efforts have been focused on the use of such complexes as advanced materials for organic optoelectronic applications. The present article describes how substitution of the sodium counter cation of DNA with cationic amphiphilic lipid(1,4) provided novel DNA,lipid complexes that contain TEMPO radicals, in which the actual mole ratio of phosphate to lipid was 1:0.84 to 1:0.16. All the TEMPO-containing DNA,lipid complexes displayed reversible two-stage charge/discharge processes, the discharge capacities of which were 40.5,60.0,A,h,kg,1. In particular, the capacity of a DNA,lipid(3)-based cell reached 60.0,A,h,kg,1, which corresponds to 192,% relative to its theoretical value for the single-electron one-stage process, indicating a two-electron process. [source] |