Home About us Contact | |||
Gene Complement (gene + complement)
Selected AbstractsThe Hox gene complement of acoel flatworms, a basal bilaterian cladeEVOLUTION AND DEVELOPMENT, Issue 3 2004Charles E. Cook Summary Several molecular data sets suggest that acoelomorph flatworms are not members of the phylum Platyhelminthes but form a separate branch of the Metazoa that diverged from all other bilaterian animals before the separation of protostomes and deuterostomes. Here we examine the Hox gene complement of the acoel flatworms. In two distantly related acoel taxa, we identify only three distinct classes of Hox gene: an anterior gene, a posterior gene, and a central class gene most similar to genes of Hox classes 4 and 5 in other Bilateria. Phylogenetic analysis of these genes, together with the acoel caudal homologue, supports the basal position of the acoels. The similar gene sets found in two distantly related acoels suggest that this reduced gene complement may be ancestral in the acoels and that the acoels may have diverged from other bilaterians before elaboration of the 8- to 10-gene Hox cluster that characterizes most bilaterians. [source] The mitochondrial genome of the Mediterranean fruit fly, Ceratitis capitataINSECT MOLECULAR BIOLOGY, Issue 2 2000L. Spanos Abstract The complete sequence of the mitochondrial genome of Ceratitis capitata has been determined. The circular genome is 15 980 bp long and contains a standard gene complement, i.e. the large and small ribosomal RNA subunits, twenty-two transfer RNA (tRNA) genes and thirteen genes encoding mitochondrial proteins. When comparing the sequence to fragments previously sequenced from other isolates it becomes apparent that interstrain polymorphisms are not rare. These differences are potentially useful for the development of diagnostic tools for population analysis applications, such as determining the source of recent introductions. Moreover, they could help obtain a solution to the long-lasting controversy on the possible eradication of the Medfly from certain locations. [source] Genome Sequencing and Comparative Genomics of Tropical Disease PathogensCELLULAR MICROBIOLOGY, Issue 12 2003Jane M. Carlton Summary The sequencing of eukaryotic genomes has lagged behind sequencing of organisms in the other domains of life, archae and bacteria, primarily due to their greater size and complexity. With recent advances in ,high-throughput ,technologies ,such ,as ,robotics and improved computational resources, the number of eukaryotic genome sequencing projects has in-creased significantly. Among these are a number of sequencing projects of tropical pathogens of medical and veterinary importance, many of which are responsible for causing widespread morbidity and mortality in peoples of developing countries. Uncovering the complete gene complement of these organisms is proving to be of immense value in the develop-ment of novel methods of parasite control, such as antiparasitic drugs and vaccines, as well as the development of new diagnostic tools. Combining pathogen genome sequences with the host and vector genome sequences is promising to be a robust method for the identification of host,pathogen interactions. Finally, comparative sequencing of related species, especially of organisms used as model systems in the study of the disease, is beginning to realize its potential in the identification of genes, and the evolutionary forces that shape the genes, that are involved in evasion of the host immune response. [source] |