Home About us Contact | |||
Gene Association (gene + association)
Terms modified by Gene Association Selected AbstractsORIGINAL ARTICLE: Activating Killer Cell Immunoglobulin-Like Receptor Genes' Association with Recurrent MiscarriageAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 1 2009Rafael Gustavo Vargas Problem, Natural killer (NK) cells are regulated through NK cell receptors such as killer cell immunoglobulin-like receptors (KIRs). KIRs are suspected of being involved in the causes of recurrent miscarriage (RM) as a higher proportion of activated NK cells were observed in women with RM when compared with that in controls. The aim of this study was to investigate if KIR genes coding for receptors known to have as ligands HLA class I molecules are correlated with RM. Method of study A matched case,control study was carried out in 68 south Brazilian Caucasian patient couples with RM and 68 control fertile couples. KIR genes were typed by PCR-Reverse SSO method. Results The rate of possession of an elevated number of activating KIR genes (positive for five or six activating KIR genes out of six different activating KIR genes analyzed) in RM patient women was significantly higher (P = 0.0201) when compared with that in control fertile women. These data suggest that women carrying a high content of activating KIR genes have about threefold increased probability to develop RM [OR = 2.71; 95% CI (1.23,6.01)]. Conclusion Our results indicate that RM could be associated with NK cell activation mediated by a profile rich in activating KIR genes. [source] The search for autism disease genesDEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 4 2004Thomas H Wassink Abstract Autism is a heritable disorder characterized by phenotypic and genetic complexity. This review begins by surveying current linkage, gene association, and cytogenetic studies performed with the goal of identifying autism disease susceptibility variants. Though numerous linkages and associations have been identified, they tend to diminish upon closer examination or attempted replication. The review therefore explores challenges to current methodologies presented by the complexities of autism that might underlie some of the current difficulties, and finishes by describing emerging phenotypic, statistical, and molecular investigational approaches that offer hope of overcoming those challenges. © 2004 Wiley-Liss, Inc. MRDD Research Reviews 2004;10:272,283. [source] Association of STAT4 and BLK, but not BANK1 or IRF5, with primary antiphospholipid syndromeARTHRITIS & RHEUMATISM, Issue 8 2009Hong Yin Objective Primary antiphospholipid syndrome (APS) is formally classified by the presence of antiphospholipid antibodies, recurrent thrombosis, and/or pregnancy morbidity in the absence of any underlying full-blown systemic autoimmune disease. However, systemic manifestations in patients with primary APS have been recently reported, as has the presence of serologic markers in common with systemic lupus erythematosus (SLE). In spite of similarities between the 2 diseases, only a minority of cases of primary APS evolve into full-blown SLE, even after a long followup period. The aim of this study was to investigate whether the analysis of SLE susceptibility genes may provide at least a partial explanation for such a discrepancy. Methods One hundred thirty-three patients with primary APS classified according to the Sydney criteria and 468 healthy control subjects from the same geographic area were recruited. We genotyped 3 single-nucleotide polymorphisms (SNPs) in IRF5 (rs2004640, rs2070197, and rs10954213), 4 SNPs in STAT4 (rs1467199, rs3821236, rs3024866, and rs7574865), 2 SNPs in BANK1 (rs10516487 and rs3733197), and 1 SNP in BLK (rs2736340). Results STAT4 and BLK displayed a strong genetic association with primary APS (for rs7574865, odds ratio [OR] 2.19, P = 5.17 × 10,7; for rs2736340, OR 2.06, P = 1.78 × 10,6), while a weak association with IRF5 and no association with BANK1 were observed. Conclusion The presence of a strong genetic association with only a few SLE susceptibility genes and the absence of a more complex gene association may contribute to the lack of cases of full-blown SLE developing in patients with primary APS, in spite of the clinical and serologic similarities between SLE and primary APS. [source] Chromosome 7p linkage and GPR154 gene association in Italian families with allergic asthmaCLINICAL & EXPERIMENTAL ALLERGY, Issue 1 2007G. Malerba Summary Background Several genome scans have reported linkage of markers on chromosome 7p with asthma and related phenotypes in different populations. A fine mapping in Finnish and French-Canadian populations has associated the GPR154 gene (also known as G-protein-coupled receptor for asthma susceptibility, GPRA) with elevated IgE or asthma. Objective To confirm chromosome 7p linkage and candidate gene association in Italian families with atopic asthma. Methods In a two-phase approach, we first performed a linkage analysis of chromosome 7, and then a family-based association study on the GPR154 gene for allergic asthma phenotypes in the Italian population. Results The screening of 117 families with 19 microsatellite markers showed potential linkage for elevated IgE (P<0.002 at 22 cM from p-ter), asthma (P<0.005 at 44 cM), or atopy (P<0.005 at 54 cM). In the second phase of the present study, candidate gene GPR154, which is located in the phase one-linked region, was investigated in 211 families with seven single nucleotide polymorphisms (SNPs) that tag most haplotype variability, by the pedigree disequilibrium test. Elevated IgE levels were associated with two GPR154 gene SNPs (SNP 546333, P=0.0046; rs740 347, P=0.006), and with haplotypes in the global test (P=0.013). Haplotype analysis performed in nuclear families having at least 1 asthmatic parent showed a significant association with asthma (P=0.0173), atopy (P=0.0058), SPT (P=0.0025), and bronchial hyper reactivity (P=0.0163). Conclusion These results support a susceptibility locus for asthma and related phenotypes on chromosome 7, and are in agreement with recent reports suggesting that a common susceptibility factor for atopic manifestations in asthma is likely conferred by the locus containing the GPR154 gene. [source] Mechanisms of Regulation of Litter Size in Pigs on the Genome LevelREPRODUCTION IN DOMESTIC ANIMALS, Issue 2007O Distl Contents Improvement in litter size has become of great interest in pig industry as good fecundity is directly related to a sow's productive life. Genetic regulation of litter size is complex and the main component traits so far defined are ovulation rate, embryonic survival, uterus capacity, foetal survival and pre-weaning losses. Improvements using concepts of the quantitative genetics let expect only slow genetic progress due to its low heritability of approximately 0.09 for number of piglets born alive. Marker assisted selection allows to dissect litter size in its component traits and using molecular genetic markers for the components of litter size traits promises more progress and advantages in optimum balancing of the different physiological mechanisms influencing litter size. In this review, efforts being made to unravel the genetic determinants of litter size are accounted and discussed. For litter size traits, more than 50 quantitative trait loci (QTL) were mapped and in more than 12 candidate genes associations confirmed. The number of useful candidate genes is much larger as shown by expression profiles and in addition, much more QTL can be assumed. These functional genomic approaches, both QTL mapping and candidate gene analysis, have to be merged for a better understanding of a wider application across different pig breeds and lines. Newly developed tools based on microarray techniques comprising DNA variants or expressed tags of many genes or even the whole genome appear useful for in depth understanding of the genetics of litter size in pigs. [source] |