Home About us Contact | |||
Genus Homo (genus + homo)
Selected AbstractsUnity in diversity: Lessons from macaque societiesEVOLUTIONARY ANTHROPOLOGY, Issue 6 2007Article first published online: 19 DEC 200, Bernard Thierry Abstract The macaque radiation is as old as the hominin radiation, approximately 7 million years. After Homo, Macaca has the widest geographical range among primates, and both of these genera are present in tropical and temperate regions as well. Whereas the single extant representative of the genus Homo diverged through processes of cultural diversification, extant species of macaques emerged through processes of evolutionary diversification. Macaque societies are characterized by profound unity and great diversity, and can best be described as variations on the same theme. To understand macaque variation and adaptation, we must take into account the processes that insure the persistence of their societies across generations and environments. [source] Human evolution at the Matuyama-Brunhes boundaryEVOLUTIONARY ANTHROPOLOGY, Issue 1 2004Article first published online: 12 FEB 200, Giorgio Manzi Abstract The cranial morphology of fossil hominids between the end of the Early Pleistocene and the beginning of the Middle Pleistocene provides crucial evidence to understand the distribution in time and space of the genus Homo. This evidence is critical for evaluating the competing models regarding diversity within our genus. The debate focuses on two alternative hypotheses, one basically anagenetic and the other cladogenetic. The first suggests that morphological change is so diffused, slow, and steady that it is meaningless to apply species names to segments of a single lineage. The second is that the morphological variation observed in the fossil record can best be described as a number of distinct species that are not connected in a linear ancestor-descendant sequence. Today much more fossil evidence is available than was in the past to test these alternative hypotheses, as well as intermediate variants. Special attention must be paid to Africa because this is the most probable continental homeland for both the origin of the genus Homo (around 2.5,2 Ma),1 as well as the site, two million or so years later, of the emergence of the species H. sapiens.2 However, the African fossil record is very poorly represented between 1 Ma and 600 ka. Europe furnishes recent discoveries in this time range around the Matuyama-Brunhes chron boundary (780,000 years ago), a period for which, at present, we have no noteworthy fossil evidence in Africa or the Levant. Two penecontemporaneous sources of European fossil evidence, the Ceprano calvaria (Italy)3 and the TD6 fossil assemblage of Atapuerca (Spain)4 are thus of great interest for testing hypotheses about human evolution in the fundamental time span bracketed between the late Early and the Middle Pleistocene. This paper is based on a phenetic approach to cranial variation aimed at reviewing the Early-to-Middle Pleistocene trajectories of human evolution. The focus of the paper is on neither the origin nor the end of the story of the genus Homo, but rather its chronological and phylogenetic core. Elucidation of the evolutionary events that happened around 780 ka during the transition from the Early to Middle Pleistocene is one of the new frontiers for human paleontology, and is critical for understanding the processes that ultimately led to the origin of H. sapiens. [source] Evolution of M1 crown size and cusp proportions in the genus HomoJOURNAL OF ANATOMY, Issue 5 2009Rolf Quam Abstract Previous research into tooth crown dimensions and cusp proportions has proved to be a useful way to identify taxonomic differences in Pliocene and Pleistocene fossil hominins. The present study has identified changes in both M1 crown size and cusp proportions within the genus Homo, with M1 overall crown size reduction apparently occurring in two main stages. The first stage (a reduction of ca. 17%) is associated with the emergence of Homo ergaster and Homo erectus sensu stricto. The second stage (a reduction of ca. 10%) occurs in Homo sapiens, but the reduced modern human M1 tooth crown size was only attained in Upper Paleolithic times. The absolute sizes of the individual cusps are highly positively correlated with overall crown size and dental reduction produces a reduction in the absolute size of each of the cusps. Most of the individual cusps scale isometrically with crown size, but the paracone shows a negative allometric relationship, indicating that the reduction in paracone size is less than in the other M1 cusps. Thus, the phylogenetically oldest cusp in the upper molars also seems to be the most stable cusp (at least in the M1). The most striking change in M1 cusp proportions is a change in the relative size of the areas of the paracone and metacone. The combination of a small relative paracone and a large relative metacone generally characterizes specimens attributed to early Homo, and the presence of this character state in Australopithecus and Paranthropus suggests it may represent the primitive condition for the later part of the hominin clade. In contrast, nearly all later Homo taxa, with the exception of Homo antecessor, show the opposite condition (i.e. a relatively large paracone and a relatively small metacone). This change in the relationship between the relative sizes of the paracone and metacone is related to an isometric reduction of the absolute size of the metacone. This metacone reduction occurs in the context of relative stability in the paracone as crown size decreases. Among later Homo taxa, both Homo heidelbergensis and Homo neanderthalensis show a further reduction of the metacone and an enlargement of the hypocone. Fossil and contemporary H. sapiens samples show a trend toward increasing the relative size of the protocone and decreasing the relative size of the hypocone. In Europe, modern human M1 cusp proportions are essentially reached during the Upper Paleolithic. Although some variation was documented among the fossil taxa, we suggest that the relative size of the M1 paracone and metacone areas may be useful for differentiating the earliest members of our genus from subsequent Homo species. [source] Docosahexaenoic acid, the aquatic diet, and hominin encephalization: Difficulties in establishing evolutionary linksAMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 1 2007Bryce A. Carlson Distinctive characteristics of modern humans, including language, tool manufacture and use, culture, and behavioral plasticity, are linked to changes in the organization and size of the brain during hominin evolution. As brain tissue is metabolically and nutritionally costly to develop and maintain, early hominin encephalization has been linked to a release of energetic and nutritional constraints. One such nutrient-based approach has focused on the n -3 long-chained polyunsaturated fatty acid docosahexaenoic acid (DHA), which is a primary constituent of membrane phospholipids within the synaptic networks of the brain essential for optimal cognitive functioning. As biosynthesis of DHA from n -3 dietary precursors (alpha-linolenic acid, LNA) is relatively inefficient, it has been suggested that preformed DHA must have been an integral dietary constituent during evolution of the genus Homo to facilitate the growth and development of an encephalizing brain. Furthermore, preformed DHA has only been identified to an appreciable extent within aquatic resources (marine and freshwater), leading to speculation that hominin encephalization is linked specifically to access and consumption of aquatic resources. The key premise of this perspective is that biosynthesis of DHA from LNA is not only inefficient but also insufficient for the growth and maturation demands of an encephalized brain. However, this assumption is not well-supported, and much evidence instead suggests that consumption of LNA, available in a wider variety of sources within a number of terrestrial ecosystems, is sufficient for normal brain development and maintenance in modern humans and presumably our ancestors. Am. J. Hum. Biol. 19:132,141, 2007. © 2006 Wiley-Liss, Inc. [source] The human fossil record: Volume one: Terminology and craniodental morphology of genus Homo (Europe)AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 5 2003Karen R. Rosenberg No abstract is available for this article. [source] Center of body mass and the evolution of female body shapeAMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 2 2003Bogus, aw Paw, owski Among primates, the genus Homo has a unique sexual dimorphism in general body shape. The stenotypic female "hourglass figure" has often been attributed to sexual selection. Sexual dimorphism both in shape and in position of the center of body mass (CoM) emerges during puberty and is related to hormonal influences. These are only the proximal and not the ultimate causes of this feature. This article explores the hypothesis that the evolutionary (i.e., ultimate) reason for female body shape and male preference for a lower waist-to-hip ratio (WHR) is due to the acquisition of bipedal locomotion and different biomechanical constraints on each sex. The demands of pregnancy and subsequently carrying infants may have more tightly constrained CoM in females than in males. A lower-position of CoM relative to height (RCoM=(CoM/height)*100%) would contribute to better stability during pregnancy and infant carrying. Using body measurements from 119 female students, we show that RCoM correlates negatively with only maximal thigh circumference and positively with only WHR and shoulder width. The relationship between RCoM and traits that best characterize female body shape seems to confirm a hypothesis of biomechanical selection pressure that may have acted on Homo female morphology, thus contributing to sexual dimorphism. Am. J. Hum. Biol. 15:144,150, 2003. © 2003 Wiley-Liss, Inc. [source] Brief communication: The distribution of perikymata on Qafzeh anterior teethAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 1 2010Debbie Guatelli-Steinberg Abstract Recent studies have suggested that Neandertals and modern humans differ in the distribution of perikymata (enamel growth increments) over their permanent anterior tooth crowns. In modern humans, perikymata become increasingly more compact toward the cervix than they do in Neandertals. Previous studies have suggested that a more homogeneous distribution of perikymata, like that of Neandertals, characterizes the anterior teeth of Homo heidelbergensis and Homo erectus as well. Here, we investigated whether Qafzeh anterior teeth (N = 14) differ from those of modern southern Africans, northern Europeans, and Alaskans (N = 47,74 depending on tooth type) in the percentage of perikymata present in their cervical halves. Using the normally distributed modern human values for each tooth type, we calculated Z -scores for the 14 Qafzeh teeth. All but two of the 14 Qafzeh teeth had negative Z -scores, meaning that values equal to these would be found in the bottom 50% of the modern human samples. Seven of the 14 would be found in the lowest 5% of the modern human distribution. Qafzeh teeth therefore appear to differ from those of modern humans in the same direction that Neandertals do: with generally lower percentages of perikymata in their cervical regions. The similarity between them appears to represent the retention of a perikymata distribution pattern present in earlier members of the genus Homo, but not generally characteristic of modern humans from diverse regions of the world. Am J Phys Anthropol 2010. © 2009 Wiley-Liss, Inc. [source] The evolution of human fatness and susceptibility to obesity: an ethological approachBIOLOGICAL REVIEWS, Issue 2 2006Jonathan C. K. Wells ABSTRACT Human susceptibility to obesity is an unusual phenomenon amongst animals. An evolutionary analysis, identifying factors favouring the capacity for fat deposition, may aid in the development of preventive public health strategies. This article considers the proximate causes, ontogeny, fitness value and evolutionary history of human fat deposition. Proximate causes include diet composition, physical activity level, feeding behaviour, endocrine and genetic factors, psychological traits, and exposure to broader environmental factors. Fat deposition peaks during late gestation and early infancy, and again during adolescence in females. As in other species, human fat stores not only buffer malnutrition, but also regulate reproduction and immune function, and are subject to sexual selection. Nevertheless, our characteristic ontogenetic pattern of fat deposition, along with relatively high fatness in adulthood, contrasts with the phenotype of other mammals occupying the tropical savannah environment in which hominids evolved. The increased value of energy stores in our species can be attributed to factors increasing either uncertainty in energy availability, or vulnerability to that uncertainty. Early hominid evolution was characterised by adaptation to a more seasonal environment, when selection would have favoured general thriftiness. The evolution of the large expensive brain in the genus Homo then favoured increased energy stores in the reproducing female, and in the offspring in early life. More recently, the introduction of agriculture has had three significant effects: exposure to regular famine; adaptation to a variety of local niches favouring population-specific adaptations; and the development of social hierarchies which predispose to differential exposure to environmental pressures. Thus, humans have persistently encountered greater energy stress than that experienced by their closest living relatives during recent evolution. The capacity to accumulate fat has therefore been a major adaptive feature of our species, but is now increasingly maladaptive in the modern environment where fluctuations in energy supply have been minimised, and productivity is dependent on mechanisation rather than physical effort. Alterations to the obesogenic environment are predicted to play a key role in reducing the prevalence of obesity. [source] |