Genome-wide Patterns (genome-wide + pattern)

Distribution by Scientific Domains


Selected Abstracts


Evidence for genetic differentiation between the molecular forms M and S within the Forest chromosomal form of Anopheles gambiae in an area of sympatry

INSECT MOLECULAR BIOLOGY, Issue 1 2002
C. Wondji
Abstract We studied genetic variation at ten microsatellite DNA loci in Anopheles gambiae populations from the Forest chromosomal form collected in four villages in Cameroon (Central Africa). Both recently described M and S molecular forms occur in sympatry in this area. Geographic differentiation within form was low (Fst < 0.017) despite geographical distance between collection sites ranging from 35 to 350 km. However, higher (Fst > 0.035) and statistically significant levels of genetic differentiation were observed between forms, being the highest between sympatric M and S populations collected within the same village. Results were consistent across all loci spread throughout the genome, therefore reflecting a genome-wide pattern. Considering previous findings of strong assortative mating within forms and general lack of hybrids in areas of sympatry, we propose that there is now sufficient direct and indirect evidence to consider both M and S molecular forms of An. gambiae as distinct species that have probably speciated recently. [source]


Heterozygosity,fitness correlations and associative overdominance: new detection method and proof of principle in the Iberian wild boar

MOLECULAR ECOLOGY, Issue 13 2009
AURELIO F. MALO
Heterozygosity-fitness correlations (HFC) may result from a genome-wide process , inbreeding , or local effects within the genome. The majority of empirical studies reporting HFCs have attributed correlations to inbreeding depression. However, HFCs are unlikely to be caused by inbreeding depression because heterozygosity measured at a small number of neutral markers is unlikely to accurately capture a genome-wide pattern. Testing the strengths of localized effects caused by associative overdominance has proven challenging. In their current paper, Amos and Acevedo-Whitehouse present a novel test for local HFCs. Using stochastic simulations, they determine the conditions under which single-locus HFCs arise, before testing the strength of the correlation between the neutral marker and a linked gene under selection in their simulations. They used insights gained from simulation to statistically investigate the likely cause of correlations between heterozygosity and disease status using data on bovine tuberculosis infections in a wild boar population. They discover that a single microsatellite marker is an excellent predictor of tuberculosis progression in infected individuals. The results are relevant for wild boar management but, more generally, they demonstrate how single-locus HFCs could be used to identify coding loci under selection in free-living populations. [source]


Sculpin hybrid zones: natural laboratories for the early stages of speciation

MOLECULAR ECOLOGY, Issue 12 2009
ANDREA SWEIGART
Firmly rooted as we are in the genomic era, it can seem incredible that as recently as 1974, Lewontin declared, ,we know virtually nothing about the genetic changes that occur in species formation'. To the contrary, we now know the genetic architecture of phenotypic differences and reproductive isolation between species for many diverse groups of plants, animals, and fungi. In recent years, detailed genetic analyses have produced a small but growing list of genes that cause reproductive isolation, several of which appear to have diverged by natural selection. Yet, a full accounting of the speciation process requires that we understand the reproductive and ecological properties of natural populations as they begin to diverge genetically, as well as the dynamics of newly evolved barriers to gene flow. One promising approach to this problem is the study of natural hybrid zones, where gene exchange between divergent populations can produce recombinant genotypes in situ. In such individuals, genomic variation might be shaped by introgression at universally adaptive or neutral loci, even as regions associated with local adaptation or reproductive isolation remain divergent. In Nolte et al. (2009), the authors take advantage of two independent, recently formed hybrid zones between sculpin species to investigate genome-wide patterns of reproductive isolation. Using a recently developed genomic clines method, the authors identify marker loci that are associated with isolation, and those that show evidence for adaptive introgression. Remarkably, Nolte et al. (2009) find little similarity between the two hybrid zones in patterns of introgression, a fact that might reflect genetic variation within species or heterogeneous natural selection. In either case, their study system has the potential to provide insight into the early stages of speciation. [source]


INVITED REVIEW: Using genome scans of DNA polymorphism to infer adaptive population divergence

MOLECULAR ECOLOGY, Issue 3 2005
JAY F. STORZ
Abstract Elucidating the genetic basis of adaptive population divergence is a goal of central importance in evolutionary biology. In principle, it should be possible to identify chromosomal regions involved in adaptive divergence by screening genome-wide patterns of DNA polymorphism to detect the locus-specific signature of positive directional selection. In the case of spatially separated populations that inhabit different environments or sympatric populations that exploit different ecological niches, it is possible to identify loci that underlie divergently selected traits by comparing relative levels of differentiation among large numbers of unlinked markers. In this review I first address the question of whether diversifying selection on polygenic traits can be expected to produce predictable patterns of allelic variation at the underlying quantitative trait loci (QTL), and whether the locus-specific effects of selection can be reliably detected against the genome-wide backdrop of stochastic variability. I then review different approaches that have been developed to identify loci involved in adaptive population divergence and I discuss the relative merits of model-based approaches that rely on assumptions about population structure vs. model-free approaches that are based on empirical distributions of summary statistics. Finally, I consider the evolutionary and functional insights that might be gained by conducting genome scans for loci involved in adaptive population divergence. [source]


Limited Distribution of a Cardiomyopathy-Associated Variant in India

ANNALS OF HUMAN GENETICS, Issue 2 2010
Tatum S. Simonson
Summary Heart failure is a leading cause of death of people in South Asia, and cardiomyopathy is a major cause of heart failure. Myosin binding protein C (MYBPC3) is expressed in the heart muscle, where it regulates the cardiac response to adrenergic stimulation and is important for the structural integrity of the sarcomere. Mutations in the MYBPC3 gene are associated with hypertrophic or dilated cardiomyopathies. A 25-base-pair deletion in intron 32 causes skipping of the downstream exon and is associated with familial cardiomyopathy. To date, this deletion is found primarily in India and South Asia, although it is also found at low frequency in Southeast Asia. In order to better characterise the distribution of this variant, we determined its frequency in 447 individuals from 19 populations, including 10 populations from India and neighbouring populations from Pakistan and Nepal. The deletion frequency is over 8% in some of our Indian samples, and it is not present in any of the populations we sampled outside of India. The differences in the deletion frequencies among populations in India are consistent with patterns of variation previously reported and with patterns we observed among Indian populations based on high-density SNP chip data. Our results indicate that the MYBPC3 deletion is primarily found among Indian populations and that its distribution is consistent with genome-wide patterns of variation in India. [source]


The microarray revolution: Perspectives from educators

BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION, Issue 4 2004
Jay L. Brewster
Abstract In recent years, microarray analysis has become a key experimental tool, enabling the analysis of genome-wide patterns of gene expression. This review approaches the microarray revolution with a focus upon four topics: 1) the early development of this technology and its application to cancer diagnostics; 2) a primer of microarray research, designed to guide the beginner; 3) a highlight of the Genome Consortium for Active Teaching (GCAT), a worldwide consortium of faculty who are integrating microarrays into the undergraduate teaching laboratory; and 4) the use of microarrays in the biotechnology industry with a look forward to future applications. A central theme within this review is the profound relevance of new, bioinformatics-based, technologies to undergraduate students within the biosciences. [source]