Genome Plasticity (genome + plasticity)

Distribution by Scientific Domains


Selected Abstracts


Characterization of DNA transport in the thermophilic bacterium Thermus thermophilus HB27

FEBS JOURNAL, Issue 18 2006
Cornelia Schwarzenlander
Horizontal gene transfer has been a major force for genome plasticity over evolutionary history, and is largely responsible for fitness-enhancing traits, including antibiotic resistance and virulence factors. In particular, for adaptation of prokaryotes to extreme environments, lateral gene transfer seems to have played a crucial role. Recently, by performing a genome-wide mutagenesis approach with Thermus thermophilus HB27, we identified the first genes in a thermophilic bacterium for the uptake of free DNA, a process called natural transformation. Here, we present the first data on the biochemistry and bioenergetics of the DNA transport process in this thermophile. We report that linear and circular plasmid DNA are equally well taken up with a high maximal velocity of 1.5 µg DNA·(mg protein),1·min,1, demonstrating an extremely efficient binding and uptake rate of 40 kb·s,1·cell,1. Uncouplers and ATPase inhibitors immediately inhibited DNA uptake, providing clear evidence that DNA translocation in HB27 is an energy-dependent process. DNA uptake studies with genomic DNA of Bacteria, Archaea and Eukarya revealed that Thermus thermophilus HB27 takes up DNA from members of all three domains of life. We propose that the extraordinary broad substrate specificity of the highly efficient Thermus thermophilus HB27 DNA uptake system may contribute significantly to thermoadaptation of Thermus thermophilus HB27 and to interdomain DNA transfer in hot environments. [source]


Shuffling genes around in hot environments: the unique DNA transporter of Thermus thermophilus

FEMS MICROBIOLOGY REVIEWS, Issue 3 2009
Beate Averhoff
Abstract Natural transformation permits the transport of DNA through bacterial membranes and represents a dominant mode for the transfer of genetic information between bacteria and between microorganisms of distant evolutionary lineages and even between members of different domains. This phenomenon, known as horizontal, or lateral, gene transfer, has been a major force for genome plasticity over evolutionary history, and is largely responsible for the spread of fitness-enhancing traits, including antibiotic resistance and virulence factors. In particular, for adaptation of prokaryotes to extreme environments, lateral gene transfer seems to have played a crucial role. Here, we present a survey of the natural transformation machinery of the thermophile Thermus thermophilus HB27. A tentative model of the transformation machinery comprising of components similar to proteins of type IV pili and type II secretion systems is presented. A comparative discussion of the subunits and the structure of the DNA translocator and the underlying mechanism of transfer of free DNA in T. thermophilus highlights conserved and unique features of the DNA translocator in T. thermophilus. We hypothesize that the extraordinary broad substrate specificity and the high efficiency of the T. thermophilus DNA uptake system is of major importance for thermoadaptation and interdomain DNA transfer in hot environments. [source]


Hairpin telomeres and genome plasticity in Borrelia: all mixed up in the end

MOLECULAR MICROBIOLOGY, Issue 3 2005
George Chaconas
Summary Spirochetes of the genus Borrelia have a highly unusual genome structure composed of over 20 replicons. Most of these replicons are linear and terminated by covalently closed hairpin ends or telomeres. Moreover, the linear replicons are affected by extensive DNA rearrangements, including telomere exchanges, DNA duplications, and harbour a large number of pseudogenes. The mechanism for the unusual genome plasticity in the linear replicons has remained elusive. The enzymatic machinery (the telomere resolvase ResT) responsible for generating the hairpin ends from replicative intermediates has recently been shown to also perform a reverse reaction that fuses telomeres on unrelated replicons. Infrequent stabilization of such fusion events over evolutionary time provides the first proposed biochemical mechanism for the DNA rearrangements that are so prominent in the linear replicons of B. burgdorferi. [source]


Mapping of IS6110 flanking regions in clinical isolates of Mycobacterium tuberculosis demonstrates genome plasticity

MOLECULAR MICROBIOLOGY, Issue 6 2000
R. M. Warren
Southern hybridization was used in combination with IS6110 insertion-locus-specific probes in a comparative study to determine the structure of chromosomal domains flanking IS6110 elements in clinical isolates of Mycobacterium tuberculosis. The resulting restriction fragment length polymorphism (RFLP) data demonstrated three mutational mechanisms responsible for the polymorphisms observed: IS6110 insertion, chromosomal mutation and deletion. The frequency of IS6110 insertion within many of the chromosomal regions demonstrates that preferential integration regions are common in M. tuberculosis. Mapping the IS6110 insertion positions and chromosomal deletions in relation to the M. tuberculosis H37Rv and M. bovis BCG genome sequences reveals numerous disruptions of predicted open reading frames (ORFs). A phylogenetic tree, based on the mutational data, showed a number of independently evolving lineages of M. tuberculosis, while analysis of the mutational events occurring at each branch point suggests both divergent and convergent evolution. A significant positive correlation was demonstrated between the mutation rate and the frequency of occurrence of different isolates in families of strains, suggesting that evolution may impact on strain ,fitness' or that strain proliferation may increase the chance of mutation. We conclude that the genome of clinical isolates of M. tuberculosis continues to evolve. [source]


REVIEW ARTICLE: Endogenous Retroviruses in Trophoblast Differentiation and Placental Development

AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 4 2010
Sarah G. Black
Citation Black SG, Arnaud F, Palmarini M, Spencer TE. Endogenous retroviruses in trophoblast differentiation and placental development. Am J Reprod Immunol 2010 Endogenous retroviruses (ERVs) are present in the genome of all vertebrates and originated from infections of the germline of the host by exogenous retroviruses. ERVs have coevolved with their hosts for millions of years and are recognized to contribute to genome plasticity, protect the host against infection of related pathogenic and exogenous retroviruses, and play a vital role in development of the placenta. Consequently, some ERVs have been positively selected and maintained in the host genome throughout evolution. This review will focus on the critical role of ERVs in development of the mammalian placenta and specifically highlight the biological role of sheep JSRV-related endogenous betaretroviruses in conceptus (embryo and associated extraembryonic membranes) development. [source]


The role of double-strand break-induced allelic homologous recombination in somatic plant cells

THE PLANT JOURNAL, Issue 3 2002
Brigitte Gisler
Summary During meiosis, homologous recombination occurs between allelic sequences. To evaluate the biological significance of such a pathway in somatic cells, we used transgenic tobacco plants with a restriction site for the rare cutting endonuclease I- SceI within a negative selectable marker gene. These plants were crossed with two tobacco lines containing, in allelic position, either a deletion or an insertion within the marker gene that rendered both marker gene and restriction site inactive. After the double-strand break induction, we selected for repair events resulting in a loss of marker gene function. This loss was mostly due to deletions. We were also able to detect double strand break-induced allelic recombination in which the break was repaired by a faithful copying process from the homologue carrying the shortened transgene. The estimated frequency indicates that homologous recombination in somatic cells between allelic sites appears to occur at the same order of magnitude as between ectopic sites, and is thus far too infrequent to act as major repair pathway. As somatic changes can be transferred to the germ line, the prevalence of intrachromatid rearrangements over allelic recombination might be an indirect prerequisite for the enhanced genome plasticity postulated for plants. [source]