Geophysical Studies (geophysical + studies)

Distribution by Scientific Domains


Selected Abstracts


Joint inversion of multiple data types with the use of multiobjective optimization: problem formulation and application to the seismic anisotropy investigations

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2007
E. Kozlovskaya
SUMMARY In geophysical studies the problem of joint inversion of multiple experimental data sets obtained by different methods is conventionally considered as a scalar one. Namely, a solution is found by minimization of linear combination of functions describing the fit of the values predicted from the model to each set of data. In the present paper we demonstrate that this standard approach is not always justified and propose to consider a joint inversion problem as a multiobjective optimization problem (MOP), for which the misfit function is a vector. The method is based on analysis of two types of solutions to MOP considered in the space of misfit functions (objective space). The first one is a set of complete optimal solutions that minimize all the components of a vector misfit function simultaneously. The second one is a set of Pareto optimal solutions, or trade-off solutions, for which it is not possible to decrease any component of the vector misfit function without increasing at least one other. We investigate connection between the standard formulation of a joint inversion problem and the multiobjective formulation and demonstrate that the standard formulation is a particular case of scalarization of a multiobjective problem using a weighted sum of component misfit functions (objectives). We illustrate the multiobjective approach with a non-linear problem of the joint inversion of shear wave splitting parameters and longitudinal wave residuals. Using synthetic data and real data from three passive seismic experiments, we demonstrate that random noise in the data and inexact model parametrization destroy the complete optimal solution, which degenerates into a fairly large Pareto set. As a result, non-uniqueness of the problem of joint inversion increases. If the random noise in the data is the only source of uncertainty, the Pareto set expands around the true solution in the objective space. In this case the ,ideal point' method of scalarization of multiobjective problems can be used. If the uncertainty is due to inexact model parametrization, the Pareto set in the objective space deviates strongly from the true solution. In this case all scalarization methods fail to find the solution close to the true one and a change of model parametrization is necessary. [source]


An international and multidisciplinary drilling project into a young complex impact structure: The 2004 ICDP Bosumtwi Crater Drilling Project,An overview

METEORITICS & PLANETARY SCIENCE, Issue 4-5 2007
Christian KOEBERL
It is the source crater of the Ivory Coast tektites. The structure was excavated in 2.1,2.2 Gyr old metasediments and metavolcanics of the Birimian Supergroup. A drilling project was conceived that would combine two major scientific interests in this crater: 1) to obtain a complete paleoenvironmental record from the time of crater formation about one million years ago, at a near-equatorial location in Africa for which very few data are available so far, and 2) to obtain a complete record of impactites at the central uplift and in the crater moat, for ground truthing and comparison with other structures. Within the framework of an international and multidisciplinary drilling project led by the International Continental Scientific Drilling Program (ICDP), 16 drill cores were obtained from June to October 2004 at six locations within Lake Bosumtwi, which is 8.5 km in diameter. The 14 sediment cores are currently being investigated for paleoenvironmental indicators. The two impactite cores LB-07A and LB-08A were drilled into the deepest section of the annular moat (540 m) and the flank of the central uplift (450 m), respectively. They are the main subject of this special issue of Meteoritics & Planetary Science, which represents the first detailed presentations of results from the deep drilling into the Bosumtwi impactite sequence. Drilling progressed in both cases through the impact breccia layer into fractured bedrock. LB-07A comprises lithic (in the uppermost part) and suevitic impact breccias with appreciable amounts of impact melt fragments. The lithic clast content is dominated by graywacke, besides various metapelites, quartzite, and a carbonate target component. Shock deformation in the form of quartz grains with planar microdeformations is abundant. First chemical results indicate a number of suevite samples that are strongly enriched in siderophile elements and Mg, but the presence of a definite meteoritic component in these samples cannot be confirmed due to high indigenous values. Core LB-08A comprises suevitic breccia in the uppermost part, followed with depth by a thick sequence of graywacke-dominated metasediment with suevite and a few granitoid dike intercalations. It is assumed that the metasediment package represents bedrock intersected in the flank of the central uplift. Both 7A and 8A suevite intersections differ from suevites outside of the northern crater rim. Deep drilling results confirmed the gross structure of the crater as imaged by the pre-drilling seismic surveys. Borehole geophysical studies conducted in the two boreholes confirmed the low seismic velocities for the post-impact sediments (less than 1800 m/s) and the impactites (2600,3300 m/s). The impactites exhibit very high porosities (up to 30 vol%), which has important implications for mechanical rock stability. The statistical analysis of the velocities and densities reveals a seismically transparent impactite sequence (free of prominent internal reflections). Petrophysical core analyses provide no support for the presence of a homogeneous magnetic unit (= melt breccia) within the center of the structure. Borehole vector magnetic data point to a patchy distribution of highly magnetic rocks within the impactite sequence. The lack of a coherent melt sheet, or indeed of any significant amounts of melt rock in the crater fill, is in contrast to expectations from modeling and pre-drilling geophysics, and presents an interesting problem for comparative studies and requires re-evaluation of existing data from other terrestrial impact craters, as well as modeling parameters. [source]


Ibitira: A basaltic achondrite from a distinct parent asteroid and implications for the Dawn mission

METEORITICS & PLANETARY SCIENCE, Issue 5 2005
David W. MITTLEFEHLDT
The mean Fe/Mn ratio of pyroxenes in Ibitira with <10 mole% wollastonite component is 36.4 ± 0.4; this value is well resolved from those of similar pyroxenes in five basaltic eucrites studied for comparison, which range from 31.2 to 32.2. Data for the latter five eucrites completely overlap. Ibitira pyroxenes have lower Fe/Mg than the basaltic eucrite pyroxenes; thus, the higher Fe/Mn ratio does not reflect a simple difference in oxidation state. Ibitira also has an oxygen isotopic composition, alkali element contents, and a Ti/Hf ratio that distinguish it from basaltic eucrites. These differences support derivation from a distinct parent asteroid. Thus, Ibitira is the first recognized representative of the fifth known asteroidal basaltic crust, the others being the HED, mesosiderite, angrite, and NWA 011 parent asteroids. 4 Vesta is generally assumed to be the HED parent asteroid. The Dawn mission will orbit 4 Vesta and will perform detailed mapping and mineralogical, compositional, and geophysical studies of the asteroid. Ibitira is only subtly different from eucritic basalts. A challenge for the Dawn mission will be to distinguish different basalt types on the surface and to attempt to determine whether 4 Vesta is indeed the HED parent asteroid. [source]


Archaeogeophysical study on the site of Tell Toukh El-Qaramous, Sharkia Governorate, East Nile Delta, Egypt

ARCHAEOLOGICAL PROSPECTION, Issue 1 2003
H. Ghazala
Abstract The archaeological site of Tell Toukh El-Qaramous, which is located to the south of Abu Kebir, Sharkiya Governorate, was subjected to detailed geophysical studies using magnetic vertical gradient and geoelectric resistivity survey. The success of these surveys depends on the contrast in the physical properties between the dominant sedimentary deposits (clays and sands) and the buried archeological constructions. The area of study occupies about 80 acres at present. It was subjected firstly to a regional geophysical survey to discover the subsurface conditions above one of the most important military fortress that had been constructed to be vanguard of the eastern entry to Egypt during the Ptolemaic age (323,30 BC). Detailed gridded magnetic (0.5 m grid interval) and geoelectric resistivity surveys (2 m grid interval) were also carried out at a selected site of about 50 × 100 m according to the recommendations of the archaeologists who periodically carried out excavation of the archaeological remains. Such surveys could help mapping of the anomalous features that probably reflect the buried archaeological remains. The integrated results of the magnetic gradient images obtained as well as apparent resistivity maps for depths ranges from 1 to 5 m gave fascinating results. The results indicate that the Tell-Toukh El-Qaramous has been built on a buried sand gezira. Also, groups of ancients walls made of mud bricks and some interesting locations of archeological buried artefacts have been delineated. Both the magnetic and resistivity data supported each other and are in good agreement for the same locations of archeological interest. Copyright © 2002 John Wiley & Sons, Ltd. [source]