Geomagnetic Field (geomagnetic + field)

Distribution by Scientific Domains


Selected Abstracts


Installation age of limestone masonry determined from its viscous remagnetization

GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 1 2006
Graham John Borradaile
Many rocks passively acquire some time-dependent or "viscous" remanent magnetism (VRM) at ambient temperatures, without any extraordinary energetic intervention. This magnetization overprints existing remanent magnetization so that it is effectively a remagnetization subparallel to the contemporary geomagnetic field, averaging the geomagnetic field orientation. Certain limestone masonry remagnetizes viscously over an archaeologically useful interval (100 to 8000 Ka) so that the degree of remagnetization is monotonically (but not linearly) related to the construction age. The laboratory unblocking temperature (TUB) that removes the viscous magnetization is a simple monotonic measure of relative age. The longer a piece of masonry remained stabilized in a certain orientation, the greater is its viscous remagnetization and the higher is its TUB. Monuments of known age with a similar limestone source permit us to establish a calibration curve of T UB against historical ages. The resulting calibration curve may then be used to predict the ages of otherwise-undated masonry. Viscous remanent magnetism dating provides precision of <50a in medieval monuments in England and <150a precision for classical to Neolithic monuments in Cyprus; precision depends on the remagnetization rate of the limestone in question. Our calibration curves, for the Jurassic Oolitic Limestone of England and for the Lefkara-Pakhna Chalks of Cyprus, allowed us to investigate the authenticity of a medieval English synagogue in Lincoln, England, and of a medieval house in Cyprus. Multiple archaeologic VRMs show that masonry was recycled in historical times. © 2006 Wiley Periodicals, Inc. [source]


New procedures to decompose geomagnetic field variations and application to volcanic activitiy

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2008
Ikuko Fujii
SUMMARY We report the development of numerical procedures for extracting long-term geomagnetic field variations caused by volcanic activity from an observed geomagnetic field by using statistical methods. The newly developed procedures are to estimate the trend from the observed data, as well as variations of non-volcanic origin such as periodic components, components related to external geomagnetic variations and observational noise. We also aim at referring to data obtained at a remote standard geomagnetic observatory rather than using a temporarily installed reference site for reasons of data quality. Two different approaches,a Bayesian statistical method and a Kalman filter method,are applied to decompose the geomagnetic field data into four components for comparison. The number of filter coefficients and the degree of condition realizations are optimized on the basis of minimization of the information criteria. The two procedures were evaluated by using a synthetic data set. Generally, the results of both methods are equally sufficient. Subtle differences are seen at the first, several data points due to arbitrarily selected initial values in the case of the Kalman filter method and at the smaller residual for the Bayesian statistical method. The largest differences are in computation time and memory size. The Kalman filter method runs a thousand times faster on a testing workstation and requires less memory than the Bayesian method. The Kalman filter method was applied to the total intensity data at Kuchi-erabu-jima volcano. The result suggests that the procedure works reasonably well. [source]


The SGR 1806-20 magnetar signature on the Earth's magnetic field

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2006
M. Mandea
SUMMARY SGRs denote ,soft ,-ray repeaters', a small class of slowly spinning neutron stars with strong magnetic fields. On 2004 December 27, a giant flare was detected from magnetar SGR 1806-20. The initial spike was followed by a hard-X-ray tail persisting for 380 s with a modulation period of 7.56 s. This event has received considerable attention, particularly in the astrophysics area. Its relevance to the geophysics community lies in the importance of investigating the effects of such an event on the near-Earth electromagnetic environment. However, the signature of a magnetar flare on the geomagnetic field has not previously been investigated. Here, by applying wavelet analysis to the high-resolution magnetic data provided by the CHAMP satellite, a modulated signal with a period of 7.5 s over the duration of the giant flare appears in the observed data. Moreover, this event was detected by the energetic ion counters onboard the DEMETER satellite. [source]


Retrieving geomagnetic secular variations from lava flows: evidence from Mounts Arso, Etna and Vesuvius (southern Italy)

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2002
Alberto Incoronato
Summary Mean directions of magnetization from Mounts Arso (Ischia Island, Gulf of Naples), Etna and Vesuvius lava flows have been determined based on very stringent linearity criteria. These indicate that, regardless of the source volcano, the lava flow mean directions of magnetization form a common path, the SISVC (Southern Italy Secular Variation Curve). This curve enables a reassessment of the age of eruption of several lavas. A date of AD 1169 is demonstrated to be the only possible time of emplacement for one Etna lava flow previously assigned an age of AD 812/1169. It is also demonstrated that two Etna lava flows, which, according to the literature, were emplaced in AD 1536 and 1595 respectively, were actually both emplaced around AD 1037. Three other Etna lava flows, one ascribed to AD 1566 and two to AD 1595, were actually emplaced between AD 1169 and 1284/85. The same time window also holds for a Vesuvius lava flow for which only an upper time threshold was previously available. Only one of the studied flows needs further sampling and analysis to verify whether this flow has been affected by a complete remagnetization or has an erroneous historical dating. The applied procedure seems to be the most appropriate one in carrying out palaeomagnetic surveys of lava flows, as also suggested by the broad agreement with some 17th and 19th century measurements of the geomagnetic field in Rome, relocated to Etna, and is likely to improve knowledge of past history of a volcano significantly. [source]


Magnetic field intensity study of the 1960 Kilauea lava flow, Hawaii, using the microwave palaeointensity technique

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2000
Mimi J. Hill
It is extremely valuable to study historic lava flows where the geomagnetic field at their time of extrusion is well known. In this study, two vertical sections, 16 m apart, have been sampled from the approximately 1 m thick 1960 Kilauea lava flow, Hawaii. Variations are seen in the rock-magnetic and palaeomagnetic properties between and within the two sections, indicating that there are small-scale lateral and vertical variations in the lava flow. The two sections showed different responses to microwave palaeointensity analysis. Section H6001 generally gave ideal linear behaviour on plots of natural remanent magnetization (NRM) lost against microwave-induced thermoremanent magnetization (TM,RM) gained, whilst the majority of samples from H6002 showed anomalous two-slope behaviour. When all plots were interpreted by taking the best-fitting line through all points, the flow mean intensity for H6001 was 31.6,±,3.6 ,T and that for H6002 was 37.1,±,6.4 ,T, compared with the expected intensity of 36 ,T. Additional historic flows need to be studied in order to ascertain whether this behaviour is typical of all lava, and whether it is best to always interpret NRM lost/TM,RM gained plots by taking the line of best fit regardless of shape. [source]


Flagellar apparatus of south-seeking many-celled magnetotactic prokaryotes

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 1 2007
Karen Tavares Silva
Abstract Magnetotactic bacteria orient and migrate along geomagnetic field lines. Each cell contains membrane-enclosed, nano-scale, iron-mineral particles called magnetosomes that cause alignment of the cell in the geomagnetic field as the bacteria swim propelled by flagella. In this work we studied the ultrastructure of the flagellar apparatus in many-celled magnetotactic prokaryotes (MMP) that consist of several Gram-negative cells arranged radially around an acellular compartment. Flagella covered the organism surface, and were observed exclusively at the portion of each cell that faced the environment. The flagella were helical tubes never as long as a complete turn of the helix. Flagellar filaments varied in length from 0.9 to 3.8 ,m (average 2.4 ± 0.5 ,m, n = 150) and in width from 12.0 to 19.5 nm (average 15.9 ± 1.4 nm, n = 52), which is different from previous reports for similar microorganisms. At the base of the flagella, a curved hook structure slightly thicker than the flagellar filaments was observed. In freeze-fractured samples, macromolecular complexes about 50 nm in diameter, which possibly corresponded to part of the flagella basal body, were observed in both the P-face of the cytoplasmic membrane and the E-face of the outer membrane. Transmission electron microscopy showed that magnetosomes occurred in planar groups in the cytoplasm close and parallel to the organism surface. A striated structure, which could be involved in maintaining magnetosomes fixed in the cell, was usually observed running along magnetosome chains. The coordinated movement of the MMP depends on the interaction between the flagella of each cell with the flagella of adjacent cells of the microorganism. Microsc. Res. Tech., 2006. © 2006 Wiley-Liss, Inc. [source]


Theoretical evaluation of magnetoreception of power-frequency fields

BIOELECTROMAGNETICS, Issue 5 2010
Jacques Vanderstraeten
Abstract Several effects of power-frequency (50/60,Hz) magnetic fields (PF-MF) of weak intensity have been hypothesized in animals and humans. No valid mechanism, however, has been proposed for an interaction between PF-MF and biological tissues and living beings at intensities relevant to animal and human exposure. Here we proposed to consider PF-MF as disrupters of the natural magnetic signal. Under exposure to these fields, an oscillating field exists that results from the vectorial summation of both the PF-MF and the geomagnetic field. At a PF-MF intensity (rms) of 0.5,µT, the peak-to-peak amplitude of the axis and/or intensity variations of this resulting field exceeds the related discrimination threshold of magnetoreception (MR) in migrating animals. From our evaluation of the 50/60,Hz responsiveness of the putative mechanisms of MR, single domain particles (Kirschvink's model) appear unable to transduce that oscillating signal. On the contrary, radical pair reactions are able to, as well as interacting multidomain iron,mineral platelets and clusters of superparamagnetic particles (Fleissner/Solov'yov's model). It is, however, not yet known whether the reception of 50/60,Hz oscillations of the natural magnetic signal might be of consequence or not. Bioelectromagnetics 31:371,379, 2010. © 2010 Wiley-Liss, Inc. [source]


Analyzing digital vector waveforms of 0,3000,Hz magnetic fields for health studies,

BIOELECTROMAGNETICS, Issue 5 2010
Joseph D. Bowman
Abstract To improve the assessment of magnetic field exposures for occupational health studies, the Multiwave® System III (MW3) was developed to capture personal exposures to the three-dimensional magnetic field vector B(t) in the 0,3000,Hz band. To process hundreds of full-shift MW3 measurements from epidemiologic studies, new computer programs were developed to calculate the magnetic field's physical properties and its interaction with biological systems through various mechanisms (magnetic induction, radical pair interactions, ion resonance, etc.). For automated calculations in the frequency domain, the software uses new algorithms that remove artifacts in the magnetic field's Fourier transform due to electronic noise and the person's motion through perturbations in the geomagnetic field from steel objects. These algorithms correctly removed the Fourier transform artifacts in 92% of samples and have improved the accuracy of frequency-dependent metrics by as much as 3300%. The output of the MwBatch software is a matrix of 41 exposure metrics calculated for each 2/15,s sample combined with 8 summary metrics for the person's full-period exposure, giving 294 summary-exposure metrics for each person monitored. In addition, the MwVisualizer software graphically explores the magnetic field's vector trace, its component waveforms, and the metrics over time. The output was validated against spreadsheet calculations with pilot data. This software successfully analyzed full-shift MW3 monitoring with 507 electric utility workers, comprising over 1 million vector waveforms. The software's output can be used to test hypotheses about magnetic field biology and disease with biophysical models and also assess compliance with exposure limits. Bioelectromagnetics 31:391,405, 2010. © 2010 Wiley-Liss, Inc. [source]


Prolonged weakening of the geomagnetic field (GMF) affects the immune system of rats

BIOELECTROMAGNETICS, Issue 1 2009
Adam Roman
Abstract The aim of this study was to find out how a long-term shielding of the geomagnetic field (GMF) affected the immune system of rats. Male and female Wistar rats were kept up to an age of 2 months in a natural GMF (about 37 µT). Afterwards, the rats were divided into four groups (males and females separately): control rats were maintained in ambient GMF, while experimental animals were housed under conditions of a weakened GMF (below 12 µT) achieved with steel cages. After 6 months, the rats were sacrificed by decapitation. Spleens and thymuses were isolated and weighed. Peritoneal cells were eluted and cultured in vitro to study their ability to produce nitric oxide (NO) and to synthesize superoxide anion (O,2), important microbicidal molecules of macrophages. The number of macrophages was estimated by a crystal violet staining method. We found that the long-term shielding of the GMF could influence the functioning of the immune system in a sex-dependent manner. The deprivation of the GMF delayed physiological thymus involution, that effect being more strongly expressed in females. The weakening of the GMF resulted in an increased number of peritoneal macrophages, especially in males. The shielding of the GMF diminished the ability of macrophages to release NO and to synthesize O,2, those effects being more powerfully expressed in males and females, respectively. It is proposed that the observed changes in the immune system occur as a consequence of the protective effect of GMF shielding on the circadian rhythm-dependent level of melatonin. Bioelectromagnetics 30:21,28, 2009. © 2008 Wiley-Liss, Inc. [source]


Investigations of a simulated geomagnetic field experienced by the international space station on attentional performance

BIOELECTROMAGNETICS, Issue 1 2009
Cristina Del Seppia
Abstract We have previously reported that the exposure to an abnormal magnetic field simulating the one encountered by the International Space Station (ISS) orbiting around the Earth may enhance autonomic response to emotional stimuli. Here we report the results of the second part of that study which tested whether this field also affects cognitive functions. Twenty-four volunteers participated in the study, 12 exposed to the natural geomagnetic field and 12 to the magnetic field encountered by ISS. The test protocol consisted of a set of eight tests chosen from a computerized test battery for the assessment of attentional performance. The duration of exposure was 90 min. No effect of exposure to ISS magnetic field was observed on attentional performance. Bioelectromagnetics 30:45,51, 2009. © 2008 Wiley-Liss, Inc. [source]


Geomagnetic field effect on cardiovascular regulation

BIOELECTROMAGNETICS, Issue 2 2004
Juraj Gmitrov
Abstract The goal of the present research was try to explain the physiological mechanism for the influence of the geomagnetic field (GMF) disturbance, reflected by the indices of the geomagnetic activity (K, Kp, Ak, and Ap indices), on cardiovascular regulation. One hundred forty three experimental runs (one daily) comprising 50 min hemodynamic monitoring sequences were carried out in rabbits sedated by pentobarbital infusion (5 mg/kg/h). We examined the arterial baroreflex effects on the short term blood pressure and heart rate (HR) variabilities reflected by the standard deviation (SD) of the average values of the mean femoral arterial blood pressure (MAP) and the HR. Baroreflex sensitivity (BRS) was estimated from blood pressure/HR response to intravenous (i.v.) bolus injections of vasoconstrictor (phenylephrine) and vasodilator (nitroprusside) drugs. We found a significant negative correlation of increasing GMF disturbance (Kp) with BRS (P,=,0.008), HR SD (P,=0.022), and MAP SD (P,=,0.002) signifying the involvement of the arterial baroreflex mechanism. The abrupt change in geomagnetic disturbance from low (K,=,0) to high (K,=,4,5) values was associated with a significant increase in MAP (83,±,5 vs. 99,±,5 mm Hg, P,=,0.045) and myocardial oxygen consumption, measured by MAP and HR product (24100,±,1800 vs. 31000,±,2500 mm Hg,·,bpm, P,=,0.034), comprising an additional cardiovascular risk. Most likely, GMF affects brainstem and higher neural cardiovascular regulatory centers modulating blood pressure and HR variabilities associated with the arterial baroreflex. Bioelectromagnetics 25:92,101, 2004. © 2004 Wiley-Liss, Inc. [source]


On the electrodetection threshold of aquatic vertebrates with ampullary or mucous gland electroreceptor organs

BIOLOGICAL REVIEWS, Issue 3 2007
Rob C. Peters
Abstract Reinterpretation of research on the electric sense in aquatic organisms with ampullary organs results in the following conclusions. The detection limit of limnic vertebrates with ampullary organs is 1 ,Vcm,1, and of marine fish is 20 nVcm,1. Angular movements are essential for stimulation of the ampullary system in uniform d.c. fields. Angular movements in the geomagnetic field also generate induction voltages, which exceed the 20 nVcm,1 limit in marine fish. As a result, marine electrosensitive fish are sensitive to motion in the geomagnetic field, whereas limnic fish are not. Angular swimming movements generate a.c. stimuli, which act like the noise in a stochastic resonance system, and result in a detection threshold in marine organisms as low as 1 nVcm,1. Fish in the benthic space are exposed to stronger electric stimuli than fish in the pelagic space. Benthic fish scan the orientation plane for the maximum potential difference with their raster of electroreceptor organs, in order to locate bioelectric prey. This behaviour explains why the detection threshold does not depend on fish size. Pelagic marine fish are mainly exposed to electric fields caused by movements in the geomagnetic field. The straight orientation courses found in certain shark species might indicate that the electric sense functions as a simple bisensor system. Symmetrical stimulation of the sensory raster would provide an easy way to keep a straight course with respect to a far-field stimulus. The same neural mechanism would be effective in the location of a bioelectric prey generating a near-field stimulus. The response criteria in conditioning experiments and in experiments with spontaneous reactions are discussed. [source]