Home About us Contact | |||
Geological Setting (geological + setting)
Selected AbstractsTectono-metamorphic history of the Tacagua ophiolitic unit (Cordillera de la Costa, northern Venezuela): Insights in the evolution of the southern margin of the Caribbean PlateISLAND ARC, Issue 1 2007Alessandro Ellero Abstract The southern margin of the Caribbean Plate is well exposed in the Cordillera de la Costa of northern Venezuela, where amalgamated terranes consisting of continental and oceanic units occur. In the Cordillera de la Costa, metamorphosed oceanic units crop out along the coast near Caracas. Among them, the Tacagua unit is characterized by metaserpentinites and metabasites showing mid-oceanic ridge basalt geochemical affinity. These lithologies, representative of a disrupted ophiolite sequence, are associated with metasediments consisting of calcschists alternating with pelitic and psammitic schists, whose protoliths were probably represented by deep-sea hemipelagic and turbiditic deposits. In the Tacagua unit, a polyphase deformation history has been reconstructed, consisting of four folding phases from D1 to D4. Geological setting suggests an involvement of the Tacagua unit in the processes connected with a subduction zone. The following deformations (from D2 to D4) observed in the field might be related to the exhumation history of the Tacagua unit. The late deformation history consists of an alternation of deformation phases characterized by displacement parallel (D2 and D4 phases) and normal (D3 phase) to plate boundary between the Caribbean and South America Plates. All lines of geological evidence suggest that the whole evolution of the Tacagua unit was acquired in a setting dominated by oblique convergence, in which alternation of strike-slip and pure compressional or pure extensional tectonics occurred through time. [source] Network-magnetotelluric method and its first results in central and eastern Hokkaido, NE JapanGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2001Makoto Uyeshima Summary A new field observation technique based on the magnetotelluric (MT) method has been developed to determine deep and large-scale 3-D electrical conductivity distributions in the Earth. The method is named ,Network-MT', and employs a commercial telephone network, to measure voltage differences with long dipole lengths ranging from 10 to several tens of kilometres. This observation configuration enables us to obtain the telluric field distribution with nearly continuous coverage over a target region. Response functions are estimated between the respective voltage differences and the horizontal magnetic fields at a reference point. Owing to the long electrode spacing, the observed responses are relatively free from the effects of small-scale near-surface heterogeneity with a scalelength shorter than the typical electrode spacing. Therefore, physically meaningful direct comparison between the observations and model responses is feasible even if the fine-scale features of near-surface heterogeneity are ignored. This extensively reduces the difficulty, especially in 3-D MT interpretation. The first Network-MT experiment was performed in central and eastern Hokkaido, NE Japan, in 1989. It took about five months to complete all of the measurements, and used 209 dipoles to cover the target area of 200(EW) × 200(NS) km2. The long electrode spacing enabled us to obtain the voltage differences with a high signal-to-noise ratio. For 175 dipoles, the squared multiple coherency between the voltage difference and the horizontal magnetic field at Memambetsu Geomagnetic Observatory was determined to be more than 0.9 in the period from 102 to 104 s. 193 MT impedances were computed in tensor form by linear combination of the response functions. The estimated impedances generally possessed smooth period dependence throughout the period range. No drastic spatial change was observed in the characteristics of the tensors for neighbouring sites, and some regional trend could be detected in the spatial distribution. Thus, we confirmed the merit of the Network-MT method, that its responses are little affected by small-scale near-surface structures. The regional feature of the response implied a significant influence of the coast effect, and was well correlated with the regional geological setting in Hokkaido. Conventional Groom,Bailey tensor decomposition analysis revealed that the target region is not regionally one- or two-dimensional. Therefore, we developed a 3-D forward modelling scheme specially designed for the Network-MT experiment, and tried to reproduce the Network-MT responses directly. In the 3-D model, a realistic land,sea distribution was considered. The resistivity of sea water was fixed to be 0.25 , m and, as a first trial of 3-D modelling, the resistivity of the land was assumed to be uniform and its value was determined to be 200 , m by a simple one-parameter inversion. Overall agreements between the observations and the best-fit model responses indicated the importance of the 3-D coast effect in the target region. However, there remained significant discrepancies, especially in the phase of the responses, which provide a clue to determining a regional deep 3-D structure. [source] A quantitative study on the use of converted waves for sub-basalt imagingGEOPHYSICAL PROSPECTING, Issue 3 2003Peter Hanssen ABSTRACT The idea of imaging beneath a high-velocity layer using converted waves has been popular since 1990. Because these wave types have their maximum amplitudes at mid- to far-offsets, the search for pure P-waves at the highly multiple-contaminated near-offsets can be avoided. For the Atlantic Margin, with buried thin-layered basalts, our quantitative study shows that the initial single-layered approach is not viable. Even in an unrealistic ideal geological setting, the amplitude of the symmetrical PSP-mode is far too weak to be recognized on towed streamer data. Furthermore, in the far-offset window, where locally converted waves have their strongest amplitudes, there is a multitude of other reflections, refractions and interbedded multiples, which have similar moveouts and, often, higher amplitudes. Without the removal of these events, a reliable image of the subsurface cannot be produced. We show that even if this problem were solved, it would be far easier to use the P-wave reflection from beneath the basalt at near-offsets. Our study shows that this wave type is by far the strongest response. A borehole-derived model using a thin-layered basalt sequence reveals that the strongest locally converted wave has an asymmetrical path and is 10 times weaker. All our results indicate that the pure P-modes provide the best chance of imaging sub-basalt sedimentary interfaces. [source] SHRIMP zircon and EPMA monazite dating of granitic rocks from the Maizuru terrane, southwest Japan: Correlation with East Asian Paleozoic terranes and geological implicationsISLAND ARC, Issue 3 2008Masahiro Fujii Abstract The Maizuru terrane, distributed in the Inner Zone of southwest Japan, is divided into three subzones (Northern, Central and Southern), each with distinct lithological associations. In clear contrast with the Southern zone consisting of the Yakuno ophiolite, the Northern zone is subdivided into the western and eastern bodies by a high-angle fault, recognized mainly by the presence of deformed granitic rocks and pelitic gneiss. This association suggests an affinity with a mature continental block; this is supported by the mode of occurrence, and petrological and isotopic data. Newly obtained sensitive high mass-resolution ion microprobe (SHRIMP) zircon U,Pb ages reveal the intrusion ages of 424 ± 16 and 405 ± 18 Ma (Siluro,Devonian) for the granites from the western body, and 249 ± 10 and 243 ± 19 Ma (Permo,Triassic) for the granodiorites from the eastern body. The granites in the western body also show inherited zircon ages of around 580 and 765 Ma. In addition, electron probe microanalysis (EPMA) monazite U,Th,total Pb dating gives around 475,460 Ma. The age of intrusion, inherited ages, mode of occurrence, and geological setting of the Siluro,Devonian granites of the Northern zone all show similarities with those of the Khanka Massif, southern Primoye, Russia, and the Hikami granitic rocks of the South Kitakami terrane, Northeast Japan. We propose that both the Siluro,Devonian and Permo,Triassic granitic rocks of the Northern zone are likely to have been juxtaposed through the Triassic,Late Jurassic dextral strike-slip movement, and to have originated from the Khanka Massif and the Hida terrane, respectively. This study strongly supports the importance of the strike-slip movement as a mechanism causing the structural rearrangement of the Paleozoic,Mesozoic terranes in the Japanese Islands, as well as in East Asia. [source] THE TRAVERSETTE (ITALIA) ROCKFALL: GEOMORPHOLOGICAL INDICATOR OF THE HANNIBALIC INVASION ROUTE*ARCHAEOMETRY, Issue 1 2010W. C. MAHANEY Numerous small, low volume rockfalls around the crest of the Italian and French Alps, principally formed from calcareous mica schist and metabasalt, have impeded travel across the major cols for millennia. As documented by Polybius and Livy in the ancient literature, Hannibal's Army was blocked by a two-tier rockfall on the lee side of the Alps, a rubble sheet of considerable volume that delayed his exit into the upper Po River Country. An in-depth study of the possible cols reveals that the only such two-tier landform lies below the Col de la Traversette, at ,2600 m above sea level. In addition, it represents a problem in applied geomorphology, namely, to accurately determine the nature of the surface rubble sheet in Hannibal's time (218 bc). A reconstruction of the initial deposit, likely Late Glacial, following the retreat of the Po Glacier, is based upon an analysis of the source rock and geological setting. Further specifications on the geometry of the Neoglacial cover sediment are based on weathering characteristics, lichen cover and soil development. The ,myth' that Hannibal fired the rockfall to comminute boulders is plausible given the vegetation records which support tree growth nearby, but is unsubstantiated by the lack of any carbonized rock. [source] Meso-Cenozoic Mineralization Pattern in the Continent of ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2000CHEN Yuchuan Abstract, Based on the complex structure and material resources, the complex geological setting of the Mesozoic-Cenozoic continent of China controlled four kinds of dynamic mechanisms of the continental tectonic-mineralization pattern, i.e. the dynamic mechanisms related to (1) underthrusting or collision, (2) activation of old tectonic belts or activity of new tectonic belts, (3) upwelling of mantle material and heat, and (4) interaction between the atmosphere, hydrosphere, biosphere and lithosphere. The four dynamic factors are related to and interact with each other; and the mantle-crust interaction leads to the regular time-space zonation of endogenetic deposits on a regional scale. The Meso-Cenozoic mineralization pattern in China can be outlined as the network tectono-metallogenic pattern constructed by NNE- and E-W-trending tectonics in eastern China, and multi-layer ring tectono-metallogenic pattern in the Qinghai-Tibet plateau and its northern and eastern neighbouring areas. [source] Electrodynamic Disaggregation: Does it Affect Apatite Fission-Track and (U-Th)/He Analyses?GEOSTANDARDS & GEOANALYTICAL RESEARCH, Issue 1 2010Jörg Giese désagrégation électrodynamique; analyse des traces de fission sur apatite; recuit; analyse (U-Th)/He; diffusion de l'He Apatite fission-track and (U-Th)/He analyses require the liberation of intact idiomorphic apatite grains from rock samples. While routinely being carried out by mechanical methods, electrodynamic disaggregation (ED) offers an alternative approach. The high-voltage discharges produced during the ED process create localised temperature peaks (10000 K) along a narrow plasma channel. In apatite, such high temperatures could potentially reduce the length of fission tracks, which start to anneal at temperatures > 60 °C, and could also enhance He diffusion, which becomes significant at 30,40 °C over geological time scales. A comparison of fission-track analyses and (U-Th)/He ages of apatites prepared both by mechanical (jaw crusher, disk mill) and ED processing provides a way of determining whether heating during the latter method has any significant effect. Apatites from three samples of different geological settings (an orthogneiss from Madagascar, the Fish Canyon Tuff, and a muscovite-gneiss from Greece) yielded statistically identical track length distributions compared to samples prepared mechanically. Additionally, (U-Th)/He ages of apatites from a leucogranite from Morocco prepared by both methods were indistinguishable. These first results indicated that during electrodynamic disaggregation apatite crystals were not heated enough to partially anneal the fission tracks or induce significant diffusive loss of He. Les analyses des traces de fission et des rapports isotopiques (U-Th)/He sur apatite nécessitent la séparation de grains intacts et automorphes d'apatite à partir des échantillons de roche. La désagrégation électrodynamique (DE) offre une approche alternative aux méthodes mécaniques utilisées actuellement en routine. Les décharges de haute tension produite pendant le processus de DE entrainent la formation de pics de température (10000 K) localisés le long d'un étroit canal de plasma. Dans l'apatite, de telles températures peuvent potentiellement réduire la longueur des traces de fission, qui commencent à recuire à des températures > 60 °C, et peuvent aussi favoriser la diffusion de l'Hélium, qui devient significative à des températures de 30,40 °C sur des échelles de temps géologiques. Une comparaison des résultats obtenus à partir des analyses des traces de fission et des âges (U-Th)/He sur des apatites séparées par des moyens mécaniques (concasseur à mâchoires, broyeur à disque) et sur d'autres séparées par la méthode de désagrégation électrodynamique offre un moyen de déterminer si le chauffage lié,à la seconde méthode a un effet significatif. Les apatites séparées par la méthode DE à partir de trois échantillons provenant de différents contextes géologiques (un orthogneiss de Madagascar, le tuf de Fish Canyon et un gneiss à muscovite de Grèce) fournissent des distributions de longueurs de trace de fission statistiquement identiques par rapport à des échantillons préparés mécaniquement. En outre, des âges (U-Th)/He obtenus à partir d'apatites provenant d'un leucogranite du Maroc et préparées par les deux méthodes (DE et mécaniques) sont indiscernables. Ces premiers résultats indiquent que, pendant la désagrégation électrodynamique, les cristaux d'apatite n'ont pas été suffisamment chauffés pour soit recuire partiellement les traces de fission soit provoquer une perte significative par diffusion de l'He. [source] Controls on surface water chemistry in two lake-watersheds in the Adirondack region of New York: differences in nitrogen solute sources and sinksHYDROLOGICAL PROCESSES, Issue 10 2007Mari Ito Abstract The southwestern Adirondack region of New York receives among the highest rates of atmospheric nitrogen (N) deposition in the USA. Atmospheric N deposition to sensitive ecosystems, like the Adirondacks, may increase the acidification of soils through losses of exchangeable nutrient cations, and the acidification of surface waters associated with enhanced mobility of nitrate (NO3,). However, watershed attributes, including surficial terrestrial characteristics, in-lake processing, and geological settings, have been found to complicate the relationships between atmospheric N deposition and N drainage losses. We studied two lake-watersheds in the southwestern Adirondacks, Grass Pond and Constable Pond, which are located in close proximity (,26 km) and receive similarly high N deposition, but have contrasting watershed attributes (e.g. wetland area, geological settings). Since the difference in the influence of N deposition was minimal, we were able to examine both within- and between-watershed influences of land cover, the contribution of glacial till groundwater inputs, and in-lake processes on surface water chemistry with particular emphasis on N solutes and dissolved organic carbon (DOC). Monthly samples at seven inlets and one outlet of each lake were collected from May to October in 1999 and 2000. The concentrations of NO3, were high at the Grass Pond inlets, especially at two inlets, and NO3, was the major N solute at the Grass Pond inlets. The concentrations of likely weathering products (i.e. dissolved Si, Ca2+, Mg2+, Na+) as well as acid neutralizing capacity and pH values, were also particularly high at those two Grass Pond inlets, suggesting a large contribution of groundwater inputs. Dissolved organic N (DON) was the major N solute at the Constable Pond inlets. The higher concentrations of DON and DOC at the Constable Pond inlets were attributed to a large wetland area in the watershed. The DOC/DON ratios were also higher at the Constable Pond inlets, possibly due to a larger proportion of coniferous forest area. Although DON and DOC were strongly related, the stronger relationship of the proportion of wetland area with DOC suggests that additional factors regulate DON. The aggregated representation of watershed physical features (i.e. elevation, watershed area, mean topographic index, hypsometric-analysis index) was not clearly related to the lake N and DOC chemistry. Despite distinctive differences in inlet N chemistry, NO3, and DON concentrations at the outlets of the two lakes were similar. The lower DOC/DON ratios at the lake outlets and at the inlets having upstream ponds suggest the importance of N processing and organic N sources within the lakes. Although an inverse relationship between NO3, and DOC/DON has been suggested to be indicative of a N deposition gradient, the existence of this relationship for sites that receive similar atmospheric N deposition suggest that the relationship between NO3, and the DOC/DON ratio is derived from environmental and physical factors. Our results suggest that, despite similar wet N deposition at the two watershed sites, N solutes entering lakes were strongly affected by hydrology associated with groundwater contribution and the presence of wetlands, whereas N solutes leaving lakes were strongly influenced by in-lake processing. Copyright © 2006 John Wiley & Sons, Ltd. [source] Experimental deformation of partially melted granite revisited: implications for the continental crustJOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2005C. L. ROSENBERG Abstract A review and reinterpretation of previous experimental data on the deformation of partially melted crustal rocks reveals that the relationship of aggregate strength to melt fraction is non-linear, even if plotted on a linear ordinate and abscissa. At melt fractions, , < 0.07, the dependence of aggregate strength on , is significantly greater than at , > 0.07. This melt fraction (, = 0.07) marks the transition from a significant increase in the proportion of melt-bearing grain boundaries up to this point to a minor increase thereafter. Therefore, we suggest that it is the increase of melt-interconnectivity that causes the dramatic strength drop between the solidus and a melt fraction of 0.07. We term this drop the ,melt connectivity transition' (MCT). A second, less-pronounced strength drop occurs at higher melt fractions and corresponds to the breakdown of the solid (crystal) framework. This is the ,solid-to-liquid transition' (SLT), corresponding to the well known ,rheologically critical melt percentage'. Although the strength drop at the SLT is about four orders of magnitude, the absolute value of this drop is small compared with the absolute strength of the unmelted aggregate, rendering the SLT invisible in a linear aggregate strength v. melt-fraction diagram. On the other hand, the more important MCT has been overlooked in previous work because experimental data usually are plotted in logarithmic strength v. melt-fraction diagrams, obscuring large strength drops at high absolute strength values. We propose that crustal-scale localization of deformation effectively coincides with the onset of melting, pre-empting attainment of the SLT in most geological settings. The SLT may be restricted to controlling flow localization within magmatic bodies, especially where melt accumulates. [source] A general inverse method for modelling extensional sedimentary basinsBASIN RESEARCH, Issue 3-4 2000P. Bellingham A two-dimensional inverse model for extracting the spatial and temporal variation of strain rate from extensional sedimentary basins is presented and applied. This model is a generalization of a one-dimensional algorithm which minimizes the misfit between predicted and observed patterns of basin subsidence. Our calculations include the effects of two-dimensional conduction and advection of heat as well as flexural rigidity. More importantly, we make no prior assumptions about the duration, number or intensity of rifting periods. Instead, the distribution of strain rate is permitted to vary smoothly through space and time until the subsidence misfit has been minimized. We have applied this inversion algorithm to extensional sedimentary basins in a variety of geological settings. Basin stratigraphy can be accurately fitted and the resultant spatiotemporal distributions of strain rate are corroborated by independent information about the number and duration of rifting episodes. Perhaps surprisingly, the smallest misfits are achieved with flexural rigidities close to zero. Spatiotemporal strain rate distributions will help to constrain the dynamical evolution of thinning continental lithosphere. The strain rate pattern governs the heat-flow history and so two-dimensional inversion can be used to construct accurate maturation models. Finally, our inversion algorithm is a stepping stone towards a generalized three-dimensional implementation. [source] |