Home About us Contact | |||
Geological Constraints (geological + constraint)
Selected AbstractsGeological constraints of pore pressure detection in shales from seismic dataBASIN RESEARCH, Issue 1 2007Gunn M. G. Teige ABSTRACT Methods for detection of pore fluid overpressures in shales from seismic data have become widespread in the oil industry. Such methods are largely based on the identification of anomalous seismic velocities, and on subsequent determination of pore pressures through relationships between seismic velocities and the vertical effective stress (VES). Although it is well known that lithology variations and compaction mechanisms should be accounted for in pore pressure evaluation, a systematic approach to evaluation of these factors in seismic pore pressure prediction seems to be absent. We have investigated the influence of lithology variations and compaction mechanism on shale velocities from acoustic logs. This was performed by analyses of 80 wells from the northern North Sea and 24 wells from the Haltenbanken area. The analyses involved identification of large-scale density and velocity variations that were unrelated to overpressure variations, which served as a basis for the analyses of the resolution of overpressure variations from well log data. The analyses demonstrated that the overpressures in neither area were associated with compaction disequilibrium. A significant correlation between acoustic velocity and fluid overpressure nevertheless exists in the Haltenbanken data, whereas the correlation between these two parameters is weak to non-existing in the North Sea shales. We do not presently know why acoustic velocities in the two areas respond differently to fluid overpressuring. Smectitic rocks often have low permeabilities, and define the top of overpressures in the northern North Sea when they are buried below 2 km. As smectitic rocks are characterized by low densities and low acoustic velocities, their presence may be identified from seismic data. Smectite identification from seismic data may thus serve as an indirect overpressure indicator in some areas. Our investigations demonstrate the importance of including geological work and process understanding in pore pressure evaluation work. As a response to the lack of documented practice within this area, we suggest a workflow for geological analyses that should be performed and integrated with seismic pore pressure prediction. [source] Depositional environments and chronology of Late Weichselian glaciation and deglaciation in the central North SeaBOREAS, Issue 3 2010ALASTAIR G. C. GRAHAM Graham, A.G.C., Lonergan, L. & Stoker, M.S. 2010: Depositional environments and chronology of Late Weichselian glaciation and deglaciation in the central North Sea. Boreas, Vol. 39, pp. 471,491. 10.1111/j.1502-3885.2010.00144.x. ISSN 0300-9483. Geological constraints on ice-sheet deglaciation are essential for improving the modelling of ice masses and understanding their potential for future change. Here, we present a detailed interpretation of depositional environments from a new 30-m-long borehole in the central North Sea, with the aim of improving constraints on the history of the marine Late Pleistocene British,Fennoscandian Ice Sheet. Seven units characterize a sequence of compacted and distorted glaciomarine diamictons, which are overlain by interbedded glaciomarine diamictons and soft, bedded to homogeneous marine muds. Through correlation of borehole and 2D/3D seismic observations, we identify three palaeoregimes. These are: a period of advance and ice-sheet overriding; a phase of deglaciation; and a phase of postglacial glaciomarine-to-marine sedimentation. Deformed subglacial sediments correlate with a buried suite of streamlined subglacial bedforms, and indicate overriding by the SE,NW-flowing Witch Ground ice stream. AMS 14C dating confirms ice-stream activity and extensive glaciation of the North Sea during the Last Glacial Maximum, between c. 30 and 16.2 14C ka BP. Sediments overlying the ice-compacted deposits have been reworked, but can be used to constrain initial deglaciation to no later than 16.2 14C ka BP. A re-advance of British ice during the last deglaciation, dated at 13.9 14C ka BP, delivered ice-proximal deposits to the core site and deposited glaciomarine sediments rapidly during the subsequent retreat. A transition to more temperate marine conditions is clear in lithostratigraphic and seismic records, marked by a regionally pervasive iceberg-ploughmarked erosion surface. The iceberg discharges that formed this horizon are dated to between 13.9 and 12 14C ka BP, and may correspond to oscillating ice-sheet margins during final, dynamic ice-sheet decay. [source] Sedimentary and crustal structure from the Ellesmere Island and Greenland continental shelves onto the Lomonosov Ridge, Arctic OceanGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2010H. Ruth Jackson SUMMARY On the northern passive margin of Ellesmere Island and Greenland, two long wide-angle seismic reflection/refraction (WAR) profiles and a short vertical incident reflection profile were acquired. The WAR seismic source was explosives and the receivers were vertical geophones placed on the sea ice. A 440 km long North-South profile that crossed the shelf, a bathymetric trough and onto the Lomonosov Ridge was completed. In addition, a 110 km long profile along the trough was completed. P -wave velocity models were created by forward and inverse modelling. On the shelf modelling indicates a 12 km deep sedimentary basin consisting of three layers with velocities of 2.1,2.2, 3.1,3.2 and 4.3,5.2 km s,1. Between the 3.1,3.2 km s,1 and 4.3,5.2 km s,1 layers there is a velocity discontinuity that dips seaward, consistent with a regional unconformity. The 4.3,5.2 km s,1 layer is interpreted to be Palaeozoic to Mesozoic age strata, based on local and regional geological constraints. Beneath these layers, velocities of 5.4,5.9 km s,1 are correlated with metasedimentary rocks that outcrop along the coast. These four layers continue from the shelf onto the Lomonosov Ridge. On the Ridge, the bathymetric contours define a plateau 220 km across. The plateau is a basement high, confirmed by short reflection profiles and the velocities of 5.9,6.5 km s,1. Radial magnetic anomalies emanate from the plateau indicating the volcanic nature of this feature. A lower crustal velocity of 6.2,6.7 km s,1, within the range identified on the Lomonosov Ridge near the Pole and typical of rifted continental crust, is interpreted along the entire line. The Moho, based on the WAR data, has significant relief from 17 to 27 km that is confirmed by gravity modelling and consistent with the regional tectonics. In the trough, Moho shallows eastward from a maximum depth of 19,16 km. No indication of oceanic crust was found in the bathymetric trough. [source] Thermal anomaly around the Nojima Fault as detected by fission-track analysis of Ogura 500 m borehole samplesISLAND ARC, Issue 3-4 2001Takahiro Tagami Abstract To better understand heat generation and transfer along earthquake faults, this paper presents preliminary zircon fission-track (FT) length data from the Nojima Fault, Awaji Island, Japan, which was activated during the 1995 Kobe earthquake (Hyogo-ken Nanbu earthquake). Samples were collected of Cretaceous granitic rocks from the Ogura 500 m borehole as well as at outcrops adjacent to the borehole site. The Nojima Fault plane was drilled at a depth of 389.4 m (borehole apparent depth). Fission-track lengths in zircons from localities > 60 m distance from the fault plane, as well as those from outcrops, are characterized by the mean values of ,10,11 ,m and unimodal distributions with positive skewness, which show no signs of an appreciable reduction in FT length. In contrast, those from nearby the fault at depths show significantly reduced mean track lengths of ,6,8 ,m and distributions having a peak around 6,7 ,m with rather negative skewness. In conjunction with other geological constraints, these results are best interpreted by a recent thermal anomaly around the fault, which is attributable to heat transfer via focused fluids from the deep interior of the crust and/or heat dispersion via fluids associated with frictional heating by fault motion. [source] |