Geographical Structuring (geographical + structuring)

Distribution by Scientific Domains


Selected Abstracts


Phylogeographical structure in the coastal species Senecio rodriguezii (Asteraceae), a narrowly distributed endemic Mediterranean plant

JOURNAL OF BIOGEOGRAPHY, Issue 7 2009
Arántzazu Molins
Abstract Aim, Our goals were (1) to assess the levels of chloroplast DNA variation in a narrowly distributed plant restricted to continental islands, (2) to ascertain whether a phylogeographical structure is present in plants restricted to coastal linear systems, and (3) to interpret the results in the light of the known palaeogeography of these islands. Location, The Eastern Balearic Islands (Majorca and Minorca) in the Western Mediterranean Basin. Methods, Sampling included 134 individuals from 28 populations of Senecio rodriguezii covering the entire range of the species. Sequences of the chloroplast genome (trnT,trnL spacer) were obtained and parameters of population genetic diversity and substructure were determined (hsht, Gst). The geographical structure of genetic variation was assessed by an analysis of molecular variance (AMOVA). Additionally, a spatial AMOVA (SAMOVA) was used to identify groups of populations that were geographically homogeneous and maximally differentiated from each other. Finally, a pattern of isolation by distance was assessed by testing the correlation between the matrix of pairwise ,ST values and the matrix of geographical distances between pairs of populations using a Mantel test. Results, Seven haplotypes were detected in S. rodriguezii. Only two of them were shared between islands; all of the others were restricted to Majorca (two) or Minorca (three). Overall, we found high levels of genetic diversity and significant geographical structuring of cpDNA markers. Most of the variation detected can be attributed to differences among populations (84.6%), but there was also a significant differentiation between the islands. Main conclusions, Our results support the view that the Balearic Islands constitute a reservoir of genetic diversity, not only for widespread Mediterranean taxa, but also for endemic ones. The intraspecific genetic structure found in S. rodriguezii suggests that its population history was dominated by both expansion and contraction events. This has resulted in a species that is highly structured genetically, showing very few shared haplotypes between islands, and a high number of haplotypes restricted to small geographical areas within the islands. Changes in habitat availability and dynamic processes of population fragmentation and connectivity due to repeated cycles of sea-level changes during the Quaternary are the possible underlying factors that have shaped the cpDNA pool of this endemic species on a regional scale. [source]


Surviving glacial ages within the Biotic Gap: phylogeography of the New Zealand cicada Maoricicada campbelli

JOURNAL OF BIOGEOGRAPHY, Issue 4 2009
Kathy B. R. Hill
Abstract Aim, New Zealand is an ideal location in which to investigate the roles of landscape and climate change on speciation and biogeography. An earlier study of the widespread endemic cicada Maoricicada campbelli (Myers) found two phylogeographically distinguishable major clades , northern South Island plus North Island (northern-SI + NI) and Otago. These two clades appeared to have diverged on either side of an area of the South Island known as the Biotic Gap. We sampled more intensively to test competing theories for this divergence. We aimed to discover if M. campbelli had survived within the Biotic Gap during recent glacial maxima, and if predicted areas of secondary contact between the two major clades existed. Location, New Zealand. Methods, We analysed mitochondrial DNA sequences (1520 bp; 212 individuals; 91 populations) using phylogenetic (maximum likelihood, Bayesian), population genetic (analysis of molecular variance) and molecular dating methods (Bayesian relaxed clock with improved priors). Results, We found strong geographical structuring of genetic variation. Our dating analyses suggest that M. campbelli originated 1.83,2.58 Ma, and split into the two major clades 1.45,2.09 Ma. The main subclades in the northern-SI + NI clade arose almost simultaneously at 0.69,1.03 Ma. Most subclades are supported by long internal branches and began to diversify 0.40,0.78 Ma. We found four narrow areas of secondary contact between the two major clades. We also found a difference between calling songs of the Otago vs. northern-SI + NI clades. Main conclusions, Phylogeographical patterns within M. campbelli indicate an early Pleistocene split into two major clades, followed by late Pleistocene range expansion and in situ population differentiation of subclades. The northern-SI + NI clade diversified so rapidly that the main subclade relationships cannot be resolved, and we now have little evidence for a disjunction across the Biotic Gap. Structure within the main subclades indicates rapid divergence after a common bottlenecking event, perhaps attributable to an extremely cold glacial maximum at c. 0.43 Ma. Clade structure and dating analyses indicate that M. campbelli survived in many refugia during recent glacial maxima, including within the Biotic Gap. The narrow overlap between the two major clades is attributed to recent contact during the current interglacial and slow gene diffusion. The two major clades appear to be in the early stages of speciation based on genetic and behavioural differences. [source]


Comparative phylogeography of the two pink salmon broodlines: an analysis based on a mitochondrial DNA genealogy

MOLECULAR ECOLOGY, Issue 6 2002
D. Churikov
Abstract Over most of their natural northern Pacific Ocean range, pink salmon (Oncorhynchus gorbuscha) spawn in a habitat that was repeatedly and profoundly affected by Pleistocene glacial advances. A strictly two-year life cycle of pink salmon has resulted in two reproductively isolated broodlines, which spawn in alternating years and evolved as temporal replicates of the same species. To study the influence of historical events on phylogeographical and population genetic structure of the two broodlines, we first reconstructed a fine-scale mtDNA haplotype genealogy from a sample of 80 individuals and then determined the geographical distribution of the major genealogical assemblages for 718 individuals sampled from nine Alaskan and eastern Asian even- and nine odd-year pink salmon populations. Analysis of restriction site states in seven polymerase chain reaction (PCR)-amplified mtDNA regions (comprising 97% of the mitochondrial genome) using 13 endonucleases resolved 38 haplotypes, which clustered into five genealogical lineages that differed from 0.065 to 0.225% in net sequence divergence. The lineage sorting between broodlines was incomplete, which suggests a recent common ancestry. Within each lineage, haplotypes exhibited star-like genealogies indicating recent population growth. The depth of the haplotype genealogy is shallow (,0.5% of nucleotide sequence divergence) and probably reflects repeated decreases in population size due to Pleistocene glacial advances. Nested clade analysis (NCA) of geographical distances showed that the geographical distribution observed for mitochondrial DNA (mtDNA) haplotypes resulted from alternating influences of historical range expansions and episodes of restricted dispersal. Analyses of molecular variance showed weak geographical structuring of mtDNA variation, except for the strong subdivision between Asian and Alaskan populations within the even-year broodline. The genetic similarities observed among and within geographical regions probably originated from postglacial recolonizations from common sources rather than extensive gene flow. The phylogeographical and population genetic structures differ substantally between broodlines. This can be explained by stochastic lineage sorting in glacial refugia and perhaps different recolonization routes in even- and odd-year broodlines. [source]


Patterns of variation at a mitochondrial sequence-tagged-site locus provides new insights into the postglacial history of European Pinus sylvestris populations

MOLECULAR ECOLOGY, Issue 9 2000
N. Soranzo
Abstract Due to their maternal mode of inheritance, mitochondrial markers can be regarded as almost ,ideal' tools in evolutionary studies of conifer populations. In the present study, polymorphism was analysed at one mitochondrial intron (nad 1, exon B/C) in 23 native European Pinus sylvestris populations. In a preliminary screening for variation using a polymerase chain reaction,restriction fragment length polymorphism approach, two length variants were identified. By fully sequencing the 2.5 kb region, the observed length polymorphism was found to result from the insertion of a 31 bp sequence, with no other mutations observed within the intron. A set of primers was designed flanking the observed mutation, which identified a novel sequence-tagged-site mitochondrial marker for P. sylvestris. Analysis of 747 trees from the 23 populations using these primers revealed the occurrence of two distinct haplotypes in Europe. Within the Iberian Peninsula, the two haplotypes exhibited extensive population differentiation (,ST = 0.59; P , 0.001) and a marked geographical structuring. In the populations of central and northern Europe, one haplotype largely predominated, with the second being found in only one individual of one population. [source]


The comparative phylogeography of Neotropical mammals: patterns of intraspecific mitochondrial DNA variation among bats contrasted to nonvolant small mammals

MOLECULAR ECOLOGY, Issue 9 2000
A. D. Ditchfield
Abstract The major aim of this study was to compare the phylogeographic patterns of codistributed bats and small nonvolant Neotropical mammals. Cytochrome b sequences (mitochondrial DNA) were obtained for a total of 275 bats representing 17 species. The tissue samples were collected in coastal Brazil, and were available from Mexico and the Guyana. The study concentrates on four species (Artibeus lituratus, Carollia perspicillata, Sturnira lilium and Glossophaga soricina) which were well represented. The other 13 species were sequenced to test the generality of the patterns observed. In general, sequence divergence values within species were low, with most bat species presenting less than 4% average sequence divergence, and usually between 1 and 2.5%. Clades of highly similar haplotypes enjoyed broad distribution on a continental scale. These clades were not usually geographically structured, and at a given locality the number of haplotypes was high (8,10). As distance increased, some moderately divergent clades were found, although the levels of divergence were low. This suggests a geographical effect that varied depending on species and scale. Small nonvolant mammals almost invariably have high levels of sequence divergence (> 10%) for cytochrome b over much shorter distances (< 1000 km). The grain of intraspecific variation found in small nonvolant mammals is much finer than in bats. Low levels of geographical structuring cannot be attributed to a slower evolutionary rate of bat DNA in relation to other mammalian taxa. The phylogeographic pattern of bats contrasts sharply with the pattern found for Neotropical rodents and marsupials. [source]


THE STATE OF THE FIELD: Combining contemporary and ancient DNA in population genetic and phylogeographical studies

MOLECULAR ECOLOGY RESOURCES, Issue 5 2010
MIGUEL NAVASCUÉS
Abstract The analysis of ancient DNA in a population genetic or phylogeographical framework is an emerging field, as traditional analytical tools were largely developed for the purpose of analysing data sampled from a single time point. Markov chain Monte Carlo approaches have been successfully developed for the analysis of heterochronous sequence data from closed panmictic populations. However, attributing genetic differences between temporal samples to mutational events between time points requires the consideration of other factors that may also result in genetic differentiation. Geographical effects are an obvious factor for species exhibiting geographical structuring of genetic variation. The departure from a closed panmictic model require researchers to either exploit software developed for the analysis of isochronous data, take advantage of simulation approaches using algorithms developed for heterochronous data, or explore approximate Bayesian computation. Here, we review statistical approaches employed and available software for the joint analysis of ancient and modern DNA, and where appropriate we suggest how these may be further developed. [source]


Genetic variation of Lates calcarifer in Peninsular Malaysia based on the cytochrome b gene

AQUACULTURE RESEARCH, Issue 15 2009
M Y Norfatimah
Abstract A 312 bp segment of the mitochondrial cytochrome b gene was sequenced from 132 sea bass Lates calcarifer individuals from nine populations across Peninsular Malaysia. Phylogenetic analysis and analysis of molecular variance within and among populations showed no significant geographical structuring. Several populations formed discrete units while others were of mixed populations. The former group suggests a low gene flow among some populations while the latter suggests that widespread translocations have impacted the other wild and cultured local populations. The data from this study have important implications for fishery management, conservation of sea bass stocks and translocation policy for aquaculture and stock enhancement in Peninsular Malaysia. [source]


Spatial Variation in the Strength of a Trophic Cascade Involving Ruellia nudiflora (Acanthaceae), an Insect Seed Predator and Associated Parasitoid Fauna in Mexico

BIOTROPICA, Issue 2 2010
Luis Abdala-Roberts
ABSTRACT Spatial variation in the strength of herbivore top-down control represents an important source of variation in plant fitness measures and community structure and function. By measuring seed predator (larvae of a Noctuid moth) and parasitoid impacts on Ruellia nudiflora across a broad spatial scale in Yucatan (Mexico), this study addressed the following: (1) to what extent does seed predator and parasitoid attack intensity associated with R. nudiflora vary spatially? (2) Does parasitoid attack result in a positive indirect effect on the plant, and does the intensity of this effect vary spatially? During the peak of fruit production (late June,early July) of 2005, we collected fruits from 21 R. nudiflora populations and grouped them into four regions: center, east, north and south. For each fruit we recorded: observed seed number, number of seeds eaten, seed predator presence, parasitoid presence and number of seeds ,saved' by parasitoids. Seed predators attacked ca 30 percent of fruits/plant on average, while parasitoids were found in 24 percent of seed predator-attacked fruits. Results indicated spatial variation in seed predator and parasitoid attack levels; interestingly, a contrasting spatial gradient of attack intensity was observed: populations/regions with greatest parasitoid attack levels usually had the lowest seed predator attack levels and vice versa, suggesting top-down control of parasitoids on seed predators. We observed a weak overall indirect impact of parasitoids on R. nudiflora (4% seeds ,saved' on average), which nonetheless varied strongly across populations (e.g., close to 14% seeds saved at one population). Findings indicate a geographical structuring of interaction strengths across populations, as well as spatial variation in the strength of parasitoid cascading effects on plant reproduction. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp [source]