Geographical Populations (geographical + population)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Biogeographical patterns of genetic differentiation in dung beetles of the genus Trypocopris (Coleoptera, Geotrupidae) inferred from mtDNA and AFLP analyses

JOURNAL OF BIOGEOGRAPHY, Issue 7 2004
Loredana Carisio
Abstract Aim, To examine the phylogeography and population structure of three dung beetle species of the genus Trypocopris (Coleoptera, Geotrupidae). We wanted to test whether genetic differences and genealogies among populations were in accordance with morphologically described subspecies and we aimed to establish times of divergence among subspecies to depict the appropriate temporal framework of their phylogeographical differentiation. We also wished to investigate the historical demographic events and the relative influences of gene flow and drift on the distribution of genetic variability of the different populations. Location, Europe (mostly Italy). Methods, We collected adult males from dung pats from 15 Italian localities over the period 2000,2002. For sequence analysis, some dried specimens from Albania, Croatia, Slovakia and Spain were also used. We applied cytochrome oxidase I mitochondrial DNA sequencing and the amplified fragment length polymorphism (AFLP) technique to determine whether phylogeographical patterns within the three species support the proposed hypotheses of subspecies designations, and to detect further structure among populations that might mediate diversification. Results and main conclusions, The results show a high concordance between the distribution of mtDNA variation and the main morphological groups recognized as subspecies, which thus may represent independent evolutionary units. The degree of mitochondrial divergence suggests that speciation events occurred during the Pliocene, while diversification of the main subspecific lineages took place in the Pleistocene, from c. 0.3 to 1.5 Ma. Mitochondrial and nuclear data also reveal that there is phylogeographical structuring among populations within each of the main groups and that both contemporary and historical processes determined this pattern of genetic structure. Geographical populations form monophyletic clades in both phylogenetic and network reconstructions. Despite the high levels of intrapopulational diversity, FST values indicate moderate but significant genetic differentiation among populations, and a Bayesian clustering analysis of the AFLP data clearly separates the geographical populations. Nucleotide and gene diversity estimates reveal interspecific differences in the degree of diversification among populations that may be related to the different ecological requirements of the three species. [source]


Molecular investigation on strain genetic relatedness and population structure of Beauveria bassiana

ENVIRONMENTAL MICROBIOLOGY, Issue 10 2003
Chengshu Wang
Summary Triplicate molecular methods, i.e. polymerase chain reaction-restriction fragment length polymorphism of the pr1 gene, microsatellite markers and 28S rDNA haplotyping by detecting the presence or absence of group I introns, were used for population study of the entomopathogenic fungus, Beauveria bassiana. The findings showed that the average genetic diversity index of geographical populations was significantly smaller than that of populations derived from insect host orders, indicating that the genetic relatedness of B. bassiana strains was highly associated with geographical locality rather than insect host species. The reproductive style of all the B. bassiana populations was found to be non-clonal. Population structure analysis revealed that the average divergent coefficient among populations of B. bassiana was far below 1 (0.1112), which indicated that there was no significant genetic differentiation between populations, and that the overall genetic diversity mainly resulted from the genetic variations within geographical populations. Statistically, genetic distances between populations were positively correlated with geographical distances, suggesting that geographical separation poses an obstacle to the possibility and frequency of genetic exchanges between populations. On the other hand, gene flow was indirectly established to occur between B. bassiana populations. [source]


Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more important than genetic variability

FUNCTIONAL ECOLOGY, Issue 5 2004
A. AYRINHAC
Summary 1According to their geographical distribution, most Drosophila species may be classified as either temperate or tropical, and this pattern is assumed to reflect differences in their thermal adaptation, especially in their cold tolerance. We investigated cold tolerance in a global collection of D. melanogaster by monitoring the time adults take to recover from chill coma after a treatment at 0 °C. 2Flies grown at an intermediate temperature (21 °C) showed a significant linear latitudinal cline: recovery was faster in populations living in colder climates. 3The role of growth temperature was analysed in a subset of tropical and temperate populations. In all cases, recovery time decreased when growth temperature was lowered, and linear reaction norms were observed. This adaptive phenotypic plasticity explained more than 80% of the total variation, while genetic latitudinal differences accounted for less than 4%. 4The beneficial effect observed in adults grown at a low temperature contrasts with other phenotypic effects which, like male sterility, appear as harmful and pathological. Our results point to the difficulty of finding a general interpretation to the diversity of plastic responses that are induced by growth temperature variations. [source]


The genetic diversity of perennial Leymus chinensis originating from China

GRASS & FORAGE SCIENCE, Issue 1 2007
Z. P. Liu
Summary Leymus chinensis is an economically and ecologically important grass that is widely distributed across eastern areas of the Eurasian steppe. A better knowledge of genetic diversity of L. chinensis could be valuable in the efficient utilization, conservation and management of germplasm collections. Genetic diversity in thirty-seven morphological characters of 293 accessions was assessed in three successive years. Based on these qualitative and quantitative characters, the genetic diversity indices (Shannon indices) of traits and geographical populations were estimated, and a principal coordinates analysis and a path analysis were undertaken. Compared with the yellow-green type of L. chinensis, the grey-green type had significantly (P < 0·05) more genetic diversity. In addition, the path analysis suggested that the combined effects of genetic diversity and vegetative traits could explain 0·206 of the total variance in plant reproductive traits. The highest Shannon genetic diversity index of accessions (H = 2·252) was observed in accessions from the region of longitude of 124,128°E, suggesting the most abundant germplasm of L. chinensis in this region. [source]


PCR-BASED TECHNIQUE FOR IDENTIFICATION AND DETECTION OF TRICHOGRAMMA SPP. (HYMENOPTERA: TRICHOGRAMMATIDAE) WITH SPECIFIC PRIMERS

INSECT SCIENCE, Issue 3 2002
LI Zheng-xi
Abstract The rDNA-ITS2 regions of T. dendrolimi Matsumura and T. ostriniae Pang et Chen (Hymenoptera: Trichogrammatidae) were cloned and sequenced. The homologous sequences available in GenBank were retrieved and analyzed, and then specific primers were designed for molecular identification and detection of T. dendrolimi. Repeated screening showed that PCR amplification by the diagnostic primers enabled the differentiation of not only bulk samples and single adult (male or female), but also eggs and juveniles, which was not possible by conventional methods. The advantage of this system over morphology-based systems is that non-specialists are able to identify individuals or trace specimens efficiently. The derived molecular detection technique was then used to identify 12 specimens collected from different localities on the Chinese mainland; the results showed that this protocol could be applied to molecular monitoring of Trichogramma species in the field. Finally, 1132s of 6 geographical populations of T. dendrolimi (TdCHA, TDJL, TdXZ, TdKH, TdCZ and TdYBL) were cloned and sequenced. The multialignment analysis of intraspecific ITS2 sequences showed that the diagnostic primers have their own theoretical bases. [source]


Comparisons of calling behaviour of different geographical populations of Helicoverpa armigera

JOURNAL OF APPLIED ENTOMOLOGY, Issue 9-10 2007
X.-C. Zhao
Abstract:, The cotton bollworm, Helicoverpa armigera, with worldwide distribution, evolves into different geotypes for adapting to the changes of geographical climates. Comparisons of calling behaviour of the insect collected from the temperate region in northern China (Beijing), the temperate region in north-western China (Kashi) and the tropical region in southern China (Haikou) were investigated in the laboratory as a first step to understanding the influence of reproductive behaviour on its population differentiation. There were more than 80% of virgin females of each population that showed calling behaviour. The age at which the moths of all three populations initiated calling varied significantly. The durations of calling in scotophase and the percentages of females calling also differed between populations. Only a few females of the Beijing and Haikou populations called in the first 2 h after the onset of scotophase, whereas many Kashi females called at this time. However, the main calling peak occurred during the second half of scotophase for all three populations. Females of the Beijing and Haikou populations exhibited similar calling onset times at the same age, whereas the Kashi females initiated calling significantly earlier than those of Beijing and Haikou from nights 3 to 7. The durations of each calling bout and the time spent by both Beijing and Haikou populations were similar to each other at the same age, but were significantly shorter than that of the Kashi population from nights 3 to 7. These results suggest that there are genetic variations not only in pre-period calling but also in the calling behaviour of H. armigera. [source]


Biogeographical patterns of genetic differentiation in dung beetles of the genus Trypocopris (Coleoptera, Geotrupidae) inferred from mtDNA and AFLP analyses

JOURNAL OF BIOGEOGRAPHY, Issue 7 2004
Loredana Carisio
Abstract Aim, To examine the phylogeography and population structure of three dung beetle species of the genus Trypocopris (Coleoptera, Geotrupidae). We wanted to test whether genetic differences and genealogies among populations were in accordance with morphologically described subspecies and we aimed to establish times of divergence among subspecies to depict the appropriate temporal framework of their phylogeographical differentiation. We also wished to investigate the historical demographic events and the relative influences of gene flow and drift on the distribution of genetic variability of the different populations. Location, Europe (mostly Italy). Methods, We collected adult males from dung pats from 15 Italian localities over the period 2000,2002. For sequence analysis, some dried specimens from Albania, Croatia, Slovakia and Spain were also used. We applied cytochrome oxidase I mitochondrial DNA sequencing and the amplified fragment length polymorphism (AFLP) technique to determine whether phylogeographical patterns within the three species support the proposed hypotheses of subspecies designations, and to detect further structure among populations that might mediate diversification. Results and main conclusions, The results show a high concordance between the distribution of mtDNA variation and the main morphological groups recognized as subspecies, which thus may represent independent evolutionary units. The degree of mitochondrial divergence suggests that speciation events occurred during the Pliocene, while diversification of the main subspecific lineages took place in the Pleistocene, from c. 0.3 to 1.5 Ma. Mitochondrial and nuclear data also reveal that there is phylogeographical structuring among populations within each of the main groups and that both contemporary and historical processes determined this pattern of genetic structure. Geographical populations form monophyletic clades in both phylogenetic and network reconstructions. Despite the high levels of intrapopulational diversity, FST values indicate moderate but significant genetic differentiation among populations, and a Bayesian clustering analysis of the AFLP data clearly separates the geographical populations. Nucleotide and gene diversity estimates reveal interspecific differences in the degree of diversification among populations that may be related to the different ecological requirements of the three species. [source]


Temperature dependent larval resource allocation shaping adult body size in Drosophila melanogaster

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2003
Z. Bochdanovits
Abstract Geographical variation in Drosophila melanogaster body size is a long-standing problem of life-history evolution. Adaptation to a cold climate invariably produces large individuals, whereas evolution in tropical regions result in small individuals. The proximate mechanism was suggested to involve thermal evolution of resource processing by the developing larvae. In this study an attempt is made to merge proximate explanations, featuring temperature sensitivity of larval resource processing, and ultimate approaches focusing on adult and pre-adult life-history traits. To address the issue of temperature dependent resource allocation to adult size vs. larval survival, feeding was stopped at several stages during the larval development. Under these conditions of food deprivation, two temperate and two tropical populations reared at high and low temperatures produced different adult body sizes coinciding with different probabilities to reach the adult stage. In all cases a phenotypic trade-off between larval survival and adult size was observed. However, the underlying pattern of larval resource allocation differed between the geographical populations. In the temperate populations larval age but not weight predicted survival. Temperate larvae did not invest accumulated resources in survival, instead they preserved larval biomass to benefit adult weight. In other words, larvae from temperate populations failed to re-allocate accumulated resources to facilitate their survival. A low percentage of the larvae survived to adulthood but produced relatively large flies. Conversely, in tropical populations larval weight but not age determined the probability to reach adulthood. Tropical larvae did not invest in adult size, but facilitated their own survival. Most larvae succeeded in pupating but then produced small adults. The underlying physiological mechanism seemed to be an evolved difference in the accessibility of glycogen reserves as a result of thermal adaptation. At low rearing temperatures and in the temperate populations, glycogen levels tended to correlate positively with adult size but negatively with pupation probability. The data presented here offer an explanation of geographical variation in body size by showing that thermal evolution of resource allocation, specifically the ability to access glycogen storage, is the proximate mechanism responsible for the life-history trade-off between larval survival and adult size. [source]


World-wide genetic differentiation of Eubalaena: questioning the number of right whale species

MOLECULAR ECOLOGY, Issue 11 2000
H. C. Rosenbaum
Abstract Few studies have examined systematic relationships of right whales (Eubalaena spp.) since the original species descriptions, even though they are one of the most endangered large whales. Little morphological evidence exists to support the current species designations for Eubalaena glacialis in the northern hemisphere and E. australis in the southern hemisphere. Differences in migratory behaviour or antitropical distribution between right whales in each hemisphere are considered a barrier to gene flow and maintain the current species distinctions and geographical populations. However, these distinctions between populations have remained controversial and no study has included an analysis of all right whales from the three major ocean basins. To address issues of genetic differentiation and relationships among right whales, we have compiled a database of mitochondrial DNA control region sequences from right whales representing populations in all three ocean basins that consist of: western North Atlantic E. glacialis, multiple geographically distributed populations of E. australis and the first molecular analysis of historical and recent samples of E. glacialis from the western and eastern North Pacific Ocean. Diagnostic characters, as well as phylogenetic and phylogeographic analyses, support the possibility that three distinct maternal lineages exist in right whales, with North Pacific E. glacialis being more closely related to E. australis than to North Atlantic E. glacialis. Our genetic results provide unequivocal character support for the two usually recognized species and a third distinct genetic lineage in the North Pacific under the Phylogenetic Species Concept, as well as levels of genetic diversity among right whales world-wide. [source]


DNA barcode discovers two cryptic species and two geographical radiations in the invasive drosophilid Zaprionus indianus

MOLECULAR ECOLOGY RESOURCES, Issue 3 2008
AMIR YASSIN
Abstract Comparing introduced to ancestral populations within a phylogeographical context is crucial in any study aiming to understand the ecological genetics of an invasive species. Zaprionus indianus is a cosmopolitan drosophilid that has recently succeeded to expand its geographical range upon three continents (Africa, Asia and the Americas). We studied the distribution of mitochondrial DNA (mtDNA) haplotypes for two genes (CO-I and CO-II) among 23 geographical populations. mtDNA revealed the presence of two well-supported phylogenetic lineages (phylads), with bootstrap value of 100%. Phylad I included three African populations, reinforcing the African-origin hypothesis of the species. Within phylad II, a distinct phylogeographical pattern was discovered: Atlantic populations (from the Americas and Madeira) were closer to the ancestral African populations than to Eastern ones (from Madagascar, Middle East and India). This means that during its passage from endemism to cosmopolitanism, Z. indianus exhibited two independent radiations, the older (the Eastern) to the East, and the younger (the Atlantic) to the West. Discriminant function analysis using 13 morphometrical characters was also able to discriminate between the two molecular phylads (93.34 ± 1.67%), although detailed morphological analysis of male genitalia using scanning electron microscopy showed no significant differences. Finally, crossing experiments revealed the presence of reproductive barrier between populations from the two phylads, and further between populations within phylad I. Hence, a bona species status was assigned to two new, cryptic species: Zaprionus africanus and Zaprionus gabonicus, and both were encompassed along with Z. indianus and Zaprionus megalorchis into the indianus complex. The ecology of these two species reveals that they are forest dwellers, which explains their restricted endemic distribution, in contrast to their relative cosmopolitan Z. indianus, known to be a human-commensal. Our results reconfirm the great utility of mtDNA at both inter- and intraspecific analyses within the frame of an integrated taxonomical project. [source]


Geographic differences in paralytic shellfish poisoning toxin profiles among Japanese populations of Alexandrium tamarense and A. catenella (Dinophyceae)

PHYCOLOGICAL RESEARCH, Issue 1 2001
Takashi Yoshida
SUMMARY To reconsider whether toxin profile could be used as a marker for populations from different geographical areas, clonal isolates of the toxic dinoflagellates Alexandrium tamarense (Lebour) Balech and Alexandrium catenella (Whedon et Kofoid) Balech from Ofunato Bay (Iwate Prefecture), Atsumi Bay (Aichi Prefecture), Tanabe Bay (Wakayama Prefecture), Harima-Nada (Kagawa Prefecture), Uranouchi Bay (Kochi Prefecture), Hiroshima Bay (Hiroshima Prefecture) and Yamakawa Bay (Kagoshima Prefecture), which were identified on the basis of morphotaxonomy, immunological and molecular biological techniques, were subjected to analysis of paralytic shellfish poisoning toxins by high performance liquid chromatography-fluorometric method. All the isolates except A. tamarense OF152 from Ofunato Bay contained mainly N-sulfocarbamoyl toxins (C1 +2) with various amounts of derivatives, and a typical north-to-south trend of decreasing toxicity was observed. In both A. tamarense and A. catenella, toxin profiles were rather constant within a geographical area and divergent among different geographical areas. The toxin profiles of A. tamarense from Harima-Nada were well conserved among different bloom years. Toxin profile showed that isolates of A. tamarense from Ofunato Bay, A. tamarense from Harima-Nada isolated in 1988 and A. catenella from Uranouchi Bay were heterogeneous. However, only two or three groups of isolates with different toxin profiles were observed in a geographical region, suggesting that several representative isolates express the genotype in a given region. These observations confirmed that toxin composition could be used as a marker to discriminate different geographical populations of these species. [source]


Differences in egg parasitism of Chrysophtharta agricola (Chapuis) (Coleoptera: Chrysomelidae) by Enoggera nassaui Girault (Hymenoptera: Pteromalidae) in relation to host and parasitoid origin

AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 3 2002
Helen F Nahrung
Abstract The first instances of egg parasitism of Chrysophtharta agricola, a pest of eucalypt plantations, are recorded. Enoggera nassaui was found parasitising C. agricola egg batches in Tasmania, the Australian Capital Territory (ACT), New South Wales and Victoria: this is the first record of this parasitoid species from Victoria. One instance of Neopolycystus sp. parasitising C. agricola eggs in Victoria was also recorded. Parasitism of egg batches by E. nassaui ranged from 0 to 55% between five geographical populations collected in mainland Australia (n = 45), and from 0 to 2% between two populations collected in Tasmania (n = 300). For mainland sites at which parasitism was recorded, parasitism rates within sites differed significantly from either population in Tasmania. Reciprocal exposure experiments using one Tasmanian (Florentine Valley) and one parasitised mainland (Picadilly Circus, ACT) population were conducted in the laboratory to examine whether these different parasitism rates were attributable to egg or parasitoid origin. Parasitoids from the ACT parasitised C. agricola eggs of both origins more successfully than parasitoids from Tasmania, with up to 65% wasp emergence compared with 33% from Tasmania. Parasitoid origin significantly affected the number of wasps that emerged from exposed batches, but not the total loss from parasitism. [source]