Geographic Mosaic (geographic + mosaic)

Distribution by Scientific Domains


Selected Abstracts


DIVERSIFYING COEVOLUTION BETWEEN CROSSBILLS AND BLACK SPRUCE ON NEWFOUNDLAND

EVOLUTION, Issue 8 2002
Thomas L. Parchman
Abstract Coevolution is increasingly recognized as an important process structuring geographic variation in the form of selection for many populations. Here we consider the importance of a geographic mosaic of coevolution to patterns of crossbill (Loxia) diversity in the northern boreal forests of North America. We examine the relationships between geographic variation in cone morphology, bill morphology, and feeding performance to test the hypothesis that, in the absence of red squirrels (Tamiasciurus hudsonicus), black spruce (Picea mariana) has lost seed defenses directed at Tamiasciurus and that red crossbills (L. curvirostra) and black spruce have coevolved in an evolutionary arms race. Comparisons of cone morphology and several indirect lines of evidence suggest that black spruce has evolved defenses in response to Tamiasciurus on mainland North America but has lost these defenses on Newfoundland. Cone traits that deter crossbills, including thicker scales that require larger forces to separate, are elevated in black spruce on Newfoundland, and larger billed crossbills have higher feeding performances than smaller billed crossbills on black spruce cones from Newfoundland. These results imply that the large bill of the Newfoundland crossbill (L. c. percna) evolved as an adaptation to the elevated cone defenses on Newfoundland and that crossbills and black spruce coevolved in an evolutionary arms race on Newfoundland during the last 9000 years since glaciers retreated. On the mainland where black spruce is not as well defended against crossbills, the small-billed white-winged crossbill (L. leucoptera leucoptera) is more efficient and specializes on seeds in the partially closed cones. Finally, reciprocal adaptations between crossbills and conifers are replicated in black spruce and Rocky Mountain lodgepole pine (Pinus contorta ssp. latifolia), with coevolution most pronounced in isolated populations where Tamiasciurus are absent as a competitor. This study further supports the role of Tamiasciurus in determining the selection mosaic for crossbills and suggests that a geographic mosaic of coevolution has been a prominent factor underlying the diversification of North American crossbills. [source]


Replicated population divergence caused by localized coevolution?

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 5 2006
A test of three hypotheses in the red crossbill-lodgepole pine system
Abstract Several lines of evidence support the hypothesis that local populations of red crossbills (Loxia curvirostra complex) enter into a predator-prey arms race with lodgepole pine (Pinus contorta latifolia) in the absence of competing pine squirrels (Tamiasciurus hudsonicus). Nevertheless, the alternative hypotheses that neutral evolution or factors other than squirrels have caused crossbill population differentiation have not been thoroughly tested. We compared crossbill and pine cone morphology between island populations where squirrels are absent or present, and mainland sites where squirrels are present, in order to distinguish among these hypotheses. All comparisons supported an effect of squirrel absence, not island status, on crossbill and cone morphology. Hence our results provide further evidence that strong localized coevolutionary interactions in a geographic mosaic have driven adaptive population differentiation. In addition, vocal differentiation of crossbills was related to the absence of squirrels, but not to island status. As morphological and vocal differentiation is correlated with reproductive isolation in crossbills, the geographic mosaic of coevolution also seems to promote ecological speciation. [source]


The geographic selection mosaic for squirrels, crossbills and Aleppo pine

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2005
E. T. MEZQUIDA
Abstract The interactions between many species are structured in a geographic mosaic of populations among which selection is divergent. Here we tested the hypothesis that such a geographic selection mosaic arises for common crossbills (Loxia curvirostra) feeding on seeds in the cones of Aleppo pine (Pinus halepensis) because of geographic variation in the occurrence of European red squirrels (Sciurus vulgaris). On the Iberian Peninsula, Sciurus exerted directional selection favouring larger cones with larger scales, which has caused cones there to be larger than in the Balearic Islands where Sciurus are absent. Moreover, cones on the Iberian Peninsula are so large that they are apparently little used by the relatively small-billed crossbills on the Peninsula; selection by Sciurus seems to have made the cones so difficult to feed on that crossbills rely mostly on the seeds of other conifers. Where crossbills are present but Sciurus are absent (Mallorca Island), cones were smaller as a result of relaxation of selection by Sciurus. However, cones on Mallorca had proportionally thicker scales in comparison to where both Sciurus and crossbills are absent (Ibiza Island), presumably as an adaptation against crossbill predation. Here crossbills specialize on Aleppo pine, have relatively large bills and have apparently coevolved in an arms race with Aleppo pine. These results suggest that Sciurus has influenced both the geographic selection mosaics for crossbills and conifers and the adaptive radiation of crossbills in Eurasia much like Tamiasciurus has done in the North America. [source]


Phylogeography and the geographic cline in the armament of a seed-predatory weevil: effects of historical events vs. natural selection from the host plant

MOLECULAR ECOLOGY, Issue 13 2006
HIROKAZU TOJU
Abstract Japanese camellia (Camellia japonica) and its seed predator, the camellia weevil (Curculio camelliae), provide a notable example of a geographic mosaic of coevolution. In the species interaction, the offensive trait of the weevil (rostrum length) and the defensive trait of the plant (pericarp thickness) are involved in a geographically-structured arms race, and these traits and selective pressures acting on the plant defence vary greatly across a geographical landscape. To further explore the geographical structure of this interspecific interaction, we tested whether the geographical variation in the weevil rostrum over an 800-km range along latitude is attributed to local natural selection or constrained by historical (phylogeographical) events of local populations. Phylogeographical analyses of the mitochondrial DNA sequences of the camellia weevil revealed that this species has experienced differentiation into two regions, with a population bottleneck and subsequent range and/or population expansion within each region. Although these phylogeographical factors have affected the variation in rostrum length, analyses of competing factors for the geographical variation revealed that this pattern is primarily determined by the defensive trait of the host plant rather than by the effects of historical events of populations and a climatic factor (annual mean temperature). Thus, our study suggests the overwhelming strength of coevolutionary selection against the effect of historical events, which may have limited local adaptation. [source]


Adaptation to host plants may prevent rapid insect responses to climate change

GLOBAL CHANGE BIOLOGY, Issue 11 2010
SHANNON L. PELINI
Abstract We must consider the role of multitrophic interactions when examining species' responses to climate change. Many plant species, particularly trees, are limited in their ability to shift their geographic ranges quickly under climate change. Consequently, for herbivorous insects, geographic mosaics of host plant specialization could prohibit range shifts and adaptation when insects become separated from suitable host plants. In this study, we examined larval growth and survival of an oak specialist butterfly (Erynnis propertius) on different oaks (Quercus spp.) that occur across its range to determine if individuals can switch host plants if they move into new areas under climate change. Individuals from Oregon and northern California, USA that feed on Q. garryana and Q. kelloggii in the field experienced increased mortality on Q. agrifolia, a southern species with low nutrient content. In contrast, populations from southern California that normally feed on Q. agrifolia performed well on Q. agrifolia and Q. garryana and poorly on the northern, high elevation Q. kelloggii. Therefore, colonization of southern E. propertius in higher elevations and some northern locales may be prohibited under climate change but latitudinal shifts to Q. garryana may be possible. Where shifts are precluded due to maladaptation to hosts, populations may not accrue warm-adapted genotypes. Our study suggests that, when interacting species experience asynchronous range shifts, historical local adaptation may preclude populations from colonizing new locales under climate change. [source]