Home About us Contact | |||
Gametophytic Cells (gametophytic + cell)
Selected AbstractsCRYOPRESERVATION OF THE GAMETOPHYTIC CELLS OF LAMINARIALES (PHAEOPHYTA) IN LIQUID NITROGEN,JOURNAL OF PHYCOLOGY, Issue 3 2004Kazuyoshi Kuwano The gametophytic cells of six species of Laminariales, Laminaria japonica Areschoug, L. longissima Miyabe, Kjellmaniella crassifolia Miyabe, Ecklonia stolonifera Okamura, E. kurome Okamura, and Undaria pinnatifida (Harvey) Suringar, were subjected to cryopreservation in liquid nitrogen. The cells were suspended in various cryoprotective solutions and slowly cooled to ,40°C over a period of 4 h. After this slow cooling step, the suspensions were immediately immersed in liquid nitrogen. All the species of Laminariaceae used in the present study survived maximally in a mixture of ethylene glycol and proline. On the other hand, the gametophytic cells of Undaria pinnatifida, a member of the Alariaceae, survived maximally in the mixture of glycerol and proline. The viability of the thawed gametophytic cells decreased during postthawing incubation. The decrease in viability continued for 4,6 days, and the minimum levels ranged from 36.2% to 67.2%. After 4,6 days of incubation, the percentage viability of all strains began to increase due to the renewal of cell division. [source] Gametophyte morphology and ultrastructure of the extremely deep shade fern, Trichomanes speciosumNEW PHYTOLOGIST, Issue 1 2001Kittima Makgomol Summary ,,The extent to which macro- and micromorphological features might contribute to tolerance of extremely deep shade by Trichomanes speciosum, a member of the filmy ferns (Hymenophyllaceae), is reported here. ,,Confocal laser scanning, transmission and scanning electron microscopy were used to study the ultrastructure of gametophytes and sporophyte leaves. ,,Gametophyte filament cells contain numerous small, spherical or ovoid chloroplasts, whereas sporophyte leaf cells have fewer, slightly larger, disc-shaped chloroplasts. The chloroplast grana of gametophytic cells have fewer thylakoids than sporophyte cells, although grana are not numerous in either. Gametophyte filament cell walls resemble those of sporophyte leaf cells, with two or more layers of electron-opaque material and covered in a thin cuticle. Gemma cell wall ultrastructure does not differ from that of gametophyte filament cells; rhizoid cell walls are thick and several-layered. ,,Neither gametophyte filaments nor sporophyte leaves have chloroplasts of the extreme forms reported for deep shade fern or angiosperm leaves. The success of the fern is attributed to a low metabolic rate and inability of other species to cope with extreme low light. [source] Ultrastructure of the vegetative gametophytic cells of Porphyra leucosticta (Rhodophyta) grown in red, blue and green lightPHYCOLOGICAL RESEARCH, Issue 4 2002Ioannes Tsekos SUMMARY The ultrastructure of the vegetative gametophytic cells of Porphyra leucosticta Thuret grown in red, blue and green light was studied both in ultrathin sections and in replicas of rapidly frozen cells. High activity of dictyosornes and mucilage sacs results in a dramatic decrease of the protoplasmic area and in thicker cell walls in red light in comparison with blue light and the control. There are numerous well-formed phycobili-somes in blue light, whereas not well-formed ones are present in red and especially in green light. There are also many phycobilisomes in the intrapyrenoidal thylakoids in blue light, fewer in green light, but they are absent in red light and in the control. It seems that in red and especially in green light, the phycobilisomes have fewer rods than in blue light. In green light, chloroplasts bear numerous genophores in contrast to blue and red light. The spacings of neighboring parallel thylakoids are as follows: control 64.3 nm, blue light 90.6 nm, red light 41.3 nm, green light 43.7 nm. Due to the relatively small spacing of the neighboring parallel thylakoids in red (41.3 nm) and in green light (43.7 nm) and of the given height of phycobilisomes (35 nm), the alternate phycobilisomes attached to neighboring lamellae are forced to interdigitate. The density of phycobilisomes per square micrometer of thylakoid surface dramatically increases in blue light (800 ,m,2) in relation to red (250 ,m,2) and green light (180 ,m,2). The protoplasmic fracture face of the thylakoids reveals numerous, tightly packed, but randomly distributed particles. The particle size distribution is uniform in the two types of fracture faces, with an average diameter of about 11.5 nm. In blue light, both the phycobilisomes and exoplasmic face particles are organized into rows with a spacing of 60,70 nm. The results (changes: in the protoplasmic area; in the spacing of the thylakoids; in phycobilisome arrangement; in structure, shape and size of phycobilisomes; and in the accumulation of plastoglobuli), have shown that the monochromatic light (blue, red and green) brings about marked changes in the package effect and consequently in the efficiency of light absorption. In addition, the blue light contributes to the intense production of chlorophyll a, phycoerythrin, phycocyanin and soluble proteins, while intense production of polysaccharidic material is attributed to red light. [source] |