Gastrin-releasing Peptide (gastrin-releasing + peptide)

Distribution by Scientific Domains


Selected Abstracts


Gastrin-Releasing Peptide, a Bombesin-like Neuropeptide, Promotes Cutaneous Wound Healing

DERMATOLOGIC SURGERY, Issue 4 2002
Yuji Yamaguchi MD
Background. Little is known about the effects of neuropeptides on wound healing. Objective. To investigate the effect of gastrin-releasing peptide (GRP), one of the bombesin-like neuropeptides, on wound healing. Methods. The effects of GRP on cultured keratinocyte proliferation and migration were measured by BrdU uptake and in vitro scratch assay, respectively. Various concentrations of GRP ointments (0, 10,9, 10,8, 10,7, 10,6 M) were topically applied to 1.0 mm wounds on porcine flanks. Results. GRP stimulated keratinocyte growth and locomotion in a dose-dependent manner. Topical administration of GRP accelerated macroscopic epidermal regeneration in a dose-dependent manner, as measured by planimetry. Histologic studies also showed that GRP promoted reepithelialization, including epidermal thickness as well as superficial skin coverage. conclusion. Topical use of GRP may clinically accelerate wound healing of burns, injuries, chronic ulcers, and skin graft donor sites through the enhancement of keratinocyte growth and spreading. [source]


Gastrin-releasing peptide: Different forms, different functions

BIOFACTORS, Issue 1 2009
Joseph Ischia
Abstract All forms of the neuropeptide gastrin-releasing peptide (GRP) are derived from the precursor proGRP1-125. Amidated GRP18-27, which together with amidated GRP1-27 was long thought to be the only biologically relevant product of the GRP gene, is involved in a multitude of physiological functions and acts as a mitogen, morphogen, and proangiogenic factor in certain cancers. Recently, GRP has been implicated in several psychiatric conditions, in the maintenance of circadian rhythm, in spinal transmission of the itch sensation, and in inflammation and wound repair. The actions of GRP are mediated by the GRP receptor. Over the last decade, nonamidated peptides derived from proGRP, such as the glycine-extended form GRP18-28 and recombinant and synthetic fragments from proGRP31-125, have been shown to be biologically active in a range of tissues and in cancer cell lines. While GRP18-28 acts via the GRP receptor, the identity of the receptor for proGRP31-125 and its fragments has not yet been established. Nonamidated fragments are also present in normal tissues and in various cancers. In fact, proGRP31-98 is the most sensitive serum biomarker in patients with small cell lung cancer and is a significant predictor of poor survival in patients with advanced prostate cancer. © 2009 International Union of Biochemistry and Molecular Biology, Inc. [source]


Diurnal regulation of the gastrin-releasing peptide receptor in the mouse circadian clock

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2006
Ilia N. Karatsoreos
Abstract In mammals, circadian rhythms are generated by the suprachiasmatic nuclei (SCN) of the hypothalamus. SCN neurons are heterogeneous and can be classified according to their function, anatomical connections, morphology and/or peptidergic identity. We focus here on gastrin-releasing peptide- (GRP) and on GRP receptor- (GRPr) expressing cells of the SCN. Pharmacological application of GRP in vivo or in vitro can shift the phase of circadian rhythms, and GRPr-deficient mice show blunted photic phase shifting. Given the in vivo and in vitro effects of GRP on circadian behavior and on SCN neuronal activity, we investigated whether the GRPr might be under circadian and/or diurnal control. Using in situ hybridization and autoradiographic receptor binding, we localized the GRPr in the mouse SCN and determined that GRP binding varies with time of day in animals housed in a light,dark cycle but not in conditions of constant darkness. The latter results were confirmed with Western blots of SCN tissue. Together, the present findings reveal that changes in GRPr are light driven and not endogenously organized. Diurnal variation in GRPr activity probably underlies intra-SCN signaling important for entrainment and phase shifting. [source]


The mouse VPAC2 receptor confers suprachiasmatic nuclei cellular rhythmicity and responsiveness to vasoactive intestinal polypeptide in vitro

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2003
David J. Cutler
Abstract Expression of coherent and rhythmic circadian (, 24 h) variation of behaviour, metabolism and other physiological processes in mammals is governed by a dominant biological clock located in the hypothalamic suprachiasmatic nuclei (SCN). Photic entrainment of the SCN circadian clock is mediated, in part, by vasoactive intestinal polypeptide (VIP) acting through the VPAC2 receptor. Here we used mice lacking the VPAC2 receptor (Vipr2,/,) to examine the contribution of this receptor to the electrophysiological actions of VIP on SCN neurons, and to the generation of SCN electrical firing rate rhythms SCN in vitro. Compared with wild-type controls, fewer SCN cells from Vipr2,/, mice responded to VIP and the VPAC2 receptor-selective agonist Ro 25-1553. By contrast, similar proportions of Vipr2,/, and wild-type SCN cells responded to gastrin-releasing peptide, arginine vasopressin or N -methyl- d -aspartate. Moreover, VIP-evoked responses from control SCN neurons were attenuated by the selective VPAC2 receptor antagonist PG 99-465. In firing rate rhythm experiments, the midday peak in activity observed in control SCN cells was lost in Vipr2,/, mice. The loss of electrical activity rhythm in Vipr2,/, mice was mimicked in control SCN slices by chronic treatment with PG 99-465. These results demonstrate that the VPAC2 receptor is necessary for the major part of the electrophysiological actions of VIP on SCN cells in vitro, and is of fundamental importance for the rhythmic and coherent expression of circadian rhythms governed by the SCN clock. These findings suggest a novel role of VPAC2 receptor signalling, and of cell-to-cell communication in general, in the maintenance of core clock function in mammals, impacting on the cellular physiology of SCN neurons. [source]


Regulation of HER expression and transactivation in human prostate cancer cells by a targeted cytotoxic bombesin analog (AN-215) and a bombesin antagonist (RC-3095)

INTERNATIONAL JOURNAL OF CANCER, Issue 8 2010
Sandra Sotomayor
Abstract Bombesin (BN) and gastrin-releasing peptide (GRP) have been shown to stimulate the growth of human prostate cancer in vivo and in vitro by mechanisms initiated by binding of the peptide to BN/GRP receptor (GRPR). GRPR is overexpressed in a variety of human cancers, including human prostatic carcinoma. This led us to evaluate the effectiveness of blocking GRPR and of chemotherapy targeted to GRPR in androgen-dependent (LNCaP) and androgen-independent (PC-3) prostate cancer cells, which exhibit different features of disease progression. Thus, we used a cytotoxic BN/GRP analog, AN-215, consisting of 2-pyrrolinodoxorubicin (AN-201) linked to BN-like carrier peptide, and a BN/GRP receptor antagonist, RC-3095. Semiquantitative RT-PCR and Western blotting revealed that mRNA and protein levels for GRPR increased in prostate cancer cells as compared with nonneoplastic RWPE-1 cells. Immunofluorocytochemistry and Western blot assays revealed that AN-215 was the most effective analog decreasing both the expression of epidermal growth factor receptor family members and the activation of epidermal growth factor receptor and HER-2, which are associated to a poor prognosis. Furthermore, analogs targeted to BN/GRP receptors, AN-215 and RC-3095, blocked the effect of BN on cell growth in RWPE-1, LNCaP and PC-3 cells. These findings shed light on the mechanisms of action of these analogs and support the view that the use of AN-215 and RC-3095 for blocking BN/GRP receptors for targeted therapy may be of benefit for treatment of advanced prostate cancer. [source]


Gastrin-releasing peptide: Different forms, different functions

BIOFACTORS, Issue 1 2009
Joseph Ischia
Abstract All forms of the neuropeptide gastrin-releasing peptide (GRP) are derived from the precursor proGRP1-125. Amidated GRP18-27, which together with amidated GRP1-27 was long thought to be the only biologically relevant product of the GRP gene, is involved in a multitude of physiological functions and acts as a mitogen, morphogen, and proangiogenic factor in certain cancers. Recently, GRP has been implicated in several psychiatric conditions, in the maintenance of circadian rhythm, in spinal transmission of the itch sensation, and in inflammation and wound repair. The actions of GRP are mediated by the GRP receptor. Over the last decade, nonamidated peptides derived from proGRP, such as the glycine-extended form GRP18-28 and recombinant and synthetic fragments from proGRP31-125, have been shown to be biologically active in a range of tissues and in cancer cell lines. While GRP18-28 acts via the GRP receptor, the identity of the receptor for proGRP31-125 and its fragments has not yet been established. Nonamidated fragments are also present in normal tissues and in various cancers. In fact, proGRP31-98 is the most sensitive serum biomarker in patients with small cell lung cancer and is a significant predictor of poor survival in patients with advanced prostate cancer. © 2009 International Union of Biochemistry and Molecular Biology, Inc. [source]