Gas Pools (gas + pool)

Distribution by Scientific Domains


Selected Abstracts


Formation Laws of Inorganic Gas Pools in the Northern Jiangsu Basin

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2000
ZHOU Liqing
Abstract, In the Northern Jiangsu basin there are high pure CO2 gas pools, low condensed oil-containing CO2 gas pools, high condensed oil-containing CO2 gas pools and He-containing natural gas pools, with the ,13Cco2 (PDB) values ranging from ,2.87%o to ,6.50%o, 3He/4He 3.71 × 10,6 to 6.42 × 10,6, R/Ra 2.64 to 4.5, 40Ar/36Ar 705 to 734, belonging to typical mantle source inorganic gas pools which are related to young magmatic activity. The gas layers occur in two major reservoir-caprock systems, the terrestrial Meso-Cenozoic clastic rock system and the marine Meso-Palaeozoic carbonate rock-clastic rock system. Controlled by the difference in the scale of traps in the two reservoir-caprock systems, large and medium-scale inorganic gas pools are formed in the marine Meso-Palaeozoic Group and only small ones are formed in the terrestrial Meso-Cenozoic strata. Inorganic gas pools in this basin are distributed along the two deep lithospheric faults on the west and south boundaries of the basin. Gas pools are developed at the intersected part of the ENE-trending faults that control the half graben and the E-W tenso-shear faults, mainly distributed near the Es1, Ny1 and Ny2 -Q basalt eruption centres. [source]


Deep-water Fan Systems and Petroleum Resources on the Northern Slope of the South China Sea

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2004
PANG Xiong
Abstract, The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil production base in China. Recent researched has revealed that a great deal of deep-water fans of great petroleum potentiality exist on the Baiyun deep-water slope below the big paleo Pearl River and its large delta. Based on a mass of exploration wells and 2-D seismic data of the shallow shelf region, a interpretation of sequence stratigraphy confirmed the existence of deep-water fans. The cyclic falling of sea level, abundant detrital matter from the paleo Pearl River and the persistent geothermal subsidence in the Baiyun sag are the three prerequisites for the formation and development of deep-water fans. There are many in common between the deep-water shelf depositional system of the northern South China Sea and the exploration hotspots region on the two banks of the Atlantic. For example, both are located on passive continent margins, and persistent secular thermal subsidence and large paleo rivers have supplied abundant material sources and organic matter. More recently, the discovery of the big gas pool on the northern slope of the Baiyun sag confirms that the Lower Tertiary lacustrine facies in the Baiyun sag has a great potentiality of source rocks. The fans overlying the Lower Tertiary source rocks should become the main exploration areas for oil and gas resources. [source]


The Genetic Mechanism and Model of Deep-Basin Gas Accumulation and Methods for Predicting the Favorable Areas

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2003
WANG Tao
Abstract, As a kind of abnormal natural gas formed with special mechanism, the deep-basin gas, accumulated in the lower parts of a basin or syncline and trapped by a tight reservoir, has such characteristics as gas-water inversion, abnormal pressure, continuous distribution and tremendous reserves. Being a geological product of the evolution of petroliferous basins by the end of the middle-late stages, the formation of a deep-basin gas accumulation must meet four conditions, i.e., continuous and sufficient gas supply, tight reservoirs in continuous distribution, good sealing caps and stable structures. The areas, where the expansion force of natural gas is smaller than the sum of the capillary force and the hydrostatic pressure within tight reservoirs, are favorable for forming deep-basin gas pools. The range delineated by the above two forces corresponds to that of the deep-basin gas trap. Within the scope of the deep-basin gas trap, the balance relationship between the amounts of ingoing and overflowing gases determines the gas-bearing area of the deep-basin gas pool. The gas volume in regions with high porosity and high permeability is worth exploring under current technical conditions and it is equivalent to the practical resources (about 10%-20% of the deep-basin gas). Based on studies of deep-basin gas formation conditions, the theory of force balance and the equation of material balance, the favorable areas and gas-containing ranges, as well as possible gas-rich regions are preliminarily predicted in the deep-basin gas pools in the Upper Paleozoic He-8 segment of the Ordos basin. [source]


Generation and accumulation of oil and condensates in the Wenchang A Sag, western Pearl River Mouth Basin, South China Sea

GEOFLUIDS (ELECTRONIC), Issue 4 2009
H. J. GAN
Abstract The Pearl River Mouth (PRM) Basin is one of four Cenozoic basins in the South China Sea, and the Wenchang A Sag is a secondary depression in the western part of the basin. Both the Wenchang and Enping formations contain good source rocks in the western PRM Basin; however, only the latter has been considered a likely source of the discovered oil and gas. New data from fluid inclusions and the analysis of oil,source rock correlations for the WC10-3 oil and gas pools indicate two stages of petroleum charging, the earlier originating from the Wenchang Formation and the later from the Enping Formation. Kinetics of petroleum generation and structural evolution modeling were employed to further investigate the mechanism of formation of the WC10-3 oil and gas pools. It was shown that the crucial condition for the formation of pools is the time of development of the structural trap. The Wenchang Formation source rocks generated oil from 25 to 14 Ma in the possible source area of the WC10-3 oil and gas pools in the Wenchang A Sag, so that only traps formed earlier than this period could capture oil sourced by the Wenchang Formation. The Enping Formation source rock experienced its oil window from 18 Ma to the present with the main stage of oil generation from 15 to 5 Ma. During this period structural traps in the sag continued to form until movements became weak, so that most pools in the Wenchang A Sag originated from the Enping Formation source rock. The likely dissipation of oil and gas from the earlier stage of charging should be taken into account in assessing the oil potential of the Wenchang A Sag. [source]


Petroleum systems of Chinese nonmarine basins

BASIN RESEARCH, Issue 1 2010
Wenzhi Zhao
The petroleum systems of Chinese nonmarine rifted and depression basins, dominated by lacustrine strata, have distinctive source rocks, reservoir types and trap characteristics. The rifted basins are characterized by numerous faults and multiple structural salients and sags (half grabens). Sags include many subdivisions and smaller isolated sags. Most sags constitute relatively independent petroleum systems that have efficiently generated and expelled hydrocarbons, have excellent reservoir properties in a variety of sand-body types, and have multiple traps. These attributes impart a petroliferous character to the entire sag. Depression basins (intracratonic flexural basins) developed on large cratons and hosted large lacustrine systems. They feature very gentle structure, large deltaic sand-bodies, source rocks in extensive contact with sand-bodies, heterogeneous low-porosity-low-permeability reservoirs and large, widespread lithology-controlled pools. In recent years, large oil and gas reserves have been discovered in these two types of lacustrine-dominated basins, contributing significantly to the growth of reserves in onshore China, and stratigraphic oil and gas pools have become the major type of accumulation in nonmarine lacustrine basins. [source]


The Genetic Mechanism and Model of Deep-Basin Gas Accumulation and Methods for Predicting the Favorable Areas

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2003
WANG Tao
Abstract, As a kind of abnormal natural gas formed with special mechanism, the deep-basin gas, accumulated in the lower parts of a basin or syncline and trapped by a tight reservoir, has such characteristics as gas-water inversion, abnormal pressure, continuous distribution and tremendous reserves. Being a geological product of the evolution of petroliferous basins by the end of the middle-late stages, the formation of a deep-basin gas accumulation must meet four conditions, i.e., continuous and sufficient gas supply, tight reservoirs in continuous distribution, good sealing caps and stable structures. The areas, where the expansion force of natural gas is smaller than the sum of the capillary force and the hydrostatic pressure within tight reservoirs, are favorable for forming deep-basin gas pools. The range delineated by the above two forces corresponds to that of the deep-basin gas trap. Within the scope of the deep-basin gas trap, the balance relationship between the amounts of ingoing and overflowing gases determines the gas-bearing area of the deep-basin gas pool. The gas volume in regions with high porosity and high permeability is worth exploring under current technical conditions and it is equivalent to the practical resources (about 10%-20% of the deep-basin gas). Based on studies of deep-basin gas formation conditions, the theory of force balance and the equation of material balance, the favorable areas and gas-containing ranges, as well as possible gas-rich regions are preliminarily predicted in the deep-basin gas pools in the Upper Paleozoic He-8 segment of the Ordos basin. [source]


The Gas Resources Assessment Expert System of the Songliao Basin

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2000
LONG Shengxiang
Abstract, The gas resources assessment expert system is one of the advanced methods for appraising oil and gas resources. The establishment of a knowledge base is the focal task in developing the expert system. This paper presents a summary of the mechanism and the major controlling factors in the formation of gas pools in the southeast uplift of the Songliao basin. Then an appropriate assessment model is established for trapping the gas resources and a knowledge base built in the expert system to realize the model. By using the expert system to appraise the gasbearing probability of 25 major traps of the Quantou and Denglouku Formations in the Shiwu-Dehui area, the authors have proved that the expert syster., is suitable for appraising traps in the Songliao basin and similar basins. [source]


Formation Laws of Inorganic Gas Pools in the Northern Jiangsu Basin

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2000
ZHOU Liqing
Abstract, In the Northern Jiangsu basin there are high pure CO2 gas pools, low condensed oil-containing CO2 gas pools, high condensed oil-containing CO2 gas pools and He-containing natural gas pools, with the ,13Cco2 (PDB) values ranging from ,2.87%o to ,6.50%o, 3He/4He 3.71 × 10,6 to 6.42 × 10,6, R/Ra 2.64 to 4.5, 40Ar/36Ar 705 to 734, belonging to typical mantle source inorganic gas pools which are related to young magmatic activity. The gas layers occur in two major reservoir-caprock systems, the terrestrial Meso-Cenozoic clastic rock system and the marine Meso-Palaeozoic carbonate rock-clastic rock system. Controlled by the difference in the scale of traps in the two reservoir-caprock systems, large and medium-scale inorganic gas pools are formed in the marine Meso-Palaeozoic Group and only small ones are formed in the terrestrial Meso-Cenozoic strata. Inorganic gas pools in this basin are distributed along the two deep lithospheric faults on the west and south boundaries of the basin. Gas pools are developed at the intersected part of the ENE-trending faults that control the half graben and the E-W tenso-shear faults, mainly distributed near the Es1, Ny1 and Ny2 -Q basalt eruption centres. [source]