Home About us Contact | |||
Gas Exchange Responses (gas + exchange_response)
Selected AbstractsSexual dimorphism and seasonal changes of leaf gas exchange in the dioecious tree Ilex paraguariensis grown in two contrasted cultivation typesANNALS OF APPLIED BIOLOGY, Issue 2 2009M. Rakocevic Abstract Yerba maté (Ilex paraguariensis, Aquifoliaceae) is a subtropical, evergreen, dioecious, South American tree. In one preliminary study, it was observed that the functional strategy of yerba mate females, aiming to finish reproductive process, was increased transpiration relative to photosynthetic rates compared with males, on self-shaded leaves. We hypothesised that the long-term gas exchange response of males and females can evolve independently of phenological stage and cultivation type. In this spirit, the primary aim of the study was to analyse the physiological sexual dimorphism of this species, evaluating fluctuations of gas exchanges related to microclimate and phenological stages. A field study was conducted on adult plants of yerba maté cultivated in monoculture (MO) and in forest understorey (FUS), and measurements carried out in situ on microclimate and leaf gas exchange parameters. The photosynthetic photon flux density that was attained at leaf level in FUS was reduced roughly 10-fold compared with that in MO. Various leaf age populations were observed during a 2-year period at 2-month intervals and grouped into four categories: young, young-fully-expanded, fully-expanded and old. Young and young-fully-expanded leaves were the most active in photosynthesis. Leaves of female plants showed greater photosynthetic rate than those of male plants, which was expressed on all leaf age categories in MO, but only during vegetative stages previous to flowering and fruit ripening. The photosynthesis of young-fully-expanded leaves of females grown in FUS was superior to males but only during winter growth pause. The stomatal conductance differed in relation to cultivation type and leaf age but did not show the sexual differentiation. Physiological sexual dimorphism in yerba mate is shown to be plastic, responding to environmental conditions. The cost associated to the reproduction of yerba maté could be most easily met showing physiological differentiation of both sexes. A higher reproductive investment of females might be compensated for by exhibiting greater leaf photosynthesis than males that occurs in vegetative stages that precede flowering and fruit ripening. [source] Photosynthetic Responses of a Temperate Liana to Xylella fastidiosa Infection and Water StressJOURNAL OF PHYTOPATHOLOGY, Issue 1 2004A. J. McElrone Abstract Xylella fastidiosa is a xylem-limited bacterial plant pathogen that causes bacterial leaf scorch in its hosts. Our previous work showed that water stress enhances leaf scorch symptom severity and progression along the stem of a liana, Parthenocissus quinquefolia, infected by X. fastidiosa. This paper explores the photosynthetic gas exchange responses of P. quinquefolia, with the aim to elucidate mechanisms behind disease expression and its interaction with water stress. We used a 2 × 2-complete factorial design, repeated over two growing seasons, with high and low soil moisture levels and infected and non-infected plants. In both years, low soil moisture levels reduced leaf water potentials, net photosynthesis and stomatal conductance at all leaf positions, while X. fastidiosa -infection reduced these parameters at basally located leaves only. Intercellular CO2 concentrations were reduced in apical leaves, but increased at the most basal leaf location, implicating a non-stomatal reduction of photosynthesis in leaves showing the greatest disease development. This result was supported by measured reductions in photosynthetic rates of basal leaves at high CO2 concentrations, where stomatal limitation was eliminated. Repeated measurements over the summer of 2000 showed that the effects of water stress and infection were progressive over time, reaching their greatest extent in September. By reducing stomatal conductances at moderate levels of water stress, P. quinquefolia maintained relatively high leaf water potentials and delayed the onset of photosynthetic damage due to pathogen and drought-induced water stress. In addition, chlorophyll fluorescence measurements showed that P. quinquefolia has an efficient means of dissipating excess light energy that protects the photosynthetic machinery of leaves from irreversible photoinhibitory damage that may occur during stress-induced stomatal limitation of photosynthesis. However, severe stress induced by disease and drought eventually led to non-stomatal decreases in photosynthesis associated with leaf senescence. [source] Leaf stomatal responses to vapour pressure deficit under current and CO2 -enriched atmosphere explained by the economics of gas exchangePLANT CELL & ENVIRONMENT, Issue 8 2009GABRIEL G. KATUL ABSTRACT Using the economics of gas exchange, early studies derived an expression of stomatal conductance (g) assuming that water cost per unit carbon is constant as the daily loss of water in transpiration (fe) is minimized for a given gain in photosynthesis (fc). Other studies reached identical results, yet assumed different forms for the underlying functions and defined the daily cost parameter as carbon cost per unit water. We demonstrated that the solution can be recovered when optimization is formulated at time scales commensurate with the response time of g to environmental stimuli. The optimization theory produced three emergent gas exchange responses that are consistent with observed behaviour: (1) the sensitivity of g to vapour pressure deficit (D) is similar to that obtained from a previous synthesis of more than 40 species showing g to scale as 1 , m log(D), where m ? [0.5,0.6], (2) the theory is consistent with the onset of an apparent ,feed-forward' mechanism in g, and (3) the emergent non-linear relationship between the ratio of intercellular to atmospheric [CO2] (ci/ca) and D agrees with the results available on this response. We extended the theory to diagnosing experimental results on the sensitivity of g to D under varying ca. [source] A refined technique for determining the respiratory gas exchange responses to anaerobic metabolism during progressive exercise , repeatability in a group of healthy menCLINICAL PHYSIOLOGY AND FUNCTIONAL IMAGING, Issue 1 2004Anita G. M. Wisén Summary The respiratory gas exchange and ventilation during an incremental cycle exercise test were analysed in a group of 19 healthy, moderately fit men. Different computer algorithms were used to estimate the V,O2 values where: (i) the rate of V,CO2 increase just exceeds the rate of V,O2 increase (DX, derivative crossing), (ii) V,CO2/V,O2 = 1·00 (PX, point of crossing) and (iii) ventilation (V,E) increases disproportionately in relation to V,CO2 (PQ, point of V,CO2 equivalent rise). The DX and PQ measurements were analysed using a new approach employing polynomial regression and the value of PX was determined following low-pass filtration of raw data. The repeatability of the measurements was evaluated with a 5,6 week interval between the tests. The correlations between tests were 0·75 at DX, 0·85 at PX and 0·62 at PQ. The mean differences between the repeated tests were not statistically significant. The repeatability of V,O2, in absolute values expressed as ±2 SD of the differences between the tests, had values of 5·0, 6·1 and 9·5 ml min,1 kg,1 for DX, PX and PQ, respectively. The mean value of V,O2 for each measurement point expressed as a percentage of V,O2max was 54% at DX, 68% at PX and 70% at PQ. The most common sequence of the measured values was DX < PX < PQ, but the sequence DX < PQ < PX was also observed. It is concluded that the gas exchange responses to developing anaerobic metabolism during progressive exercise can be characterized by a series of thresholds. However, the considerable variation in absolute values in the two testing occasions requires further attention. [source] |