Home About us Contact | |||
Gas Diffusion (gas + diffusion)
Terms modified by Gas Diffusion Selected AbstractsPristine New Zealand forest soil is a strong methane sinkGLOBAL CHANGE BIOLOGY, Issue 1 2004Sally J. Price Abstract Methanotrophic bacteria oxidize methane (CH4) in forest soils that cover ,30% of Earth's land surface. The first measurements for a pristine Southern Hemisphere forest are reported here. Soil CH4 oxidation rate averaged 10.5±0.6 kg CH4 ha,1 yr,1, with the greatest rates in dry warm soil (up to 17 kg CH4 ha,1 yr,1). Methanotrophic activity was concentrated beneath the organic horizon at 50,100 mm depth. Water content was the principal regulator of (r2=0.88) from the most common value of field capacity to less than half of this when the soil was driest. Multiple linear regression analysis showed that soil temperature was not very influential. However, inverse co-variability confounded the separation of soil water and temperature effects in situ. Fick's law explained the role of water content in regulating gas diffusion and substrate supply to the methanotrophs and the importance of pore size distribution and tortuosity. This analysis also showed that the chambers used in the study did not affect the oxidation rate measurements. The soil was always a net sink for atmospheric CH4 and no net CH4 (or nitrous oxide, N2O) emissions were measured over the 17-month long study. For New Zealand, national-scale extrapolation of our data suggested the potential to offset 13% of CH4 emissions from ca. 90 M ruminant animals. Our average was about 6.5 times higher than rates reported for most Northern Hemisphere forest soils. This very high was attributed to the lack of anthropogenic disturbance for at least 3000,5000 years and the low rate of atmospheric nitrogen deposition. Our truly baseline data could represent a valid preagricultural, preindustrial estimate of the soil sink for temperate latitudes. [source] Non-isothermal multi-phase modeling of PEM fuel cell cathodeINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 7 2010Nada Zamel Abstract In this study, numerical simulation has been carried out for the heat transfer and temperature distribution in the cathode of polymer electrolyte membrane fuel cells along with the multi-phase and multi-species transport under the steady-state condition. The commercial software, COMSOL Multiphysics, is used to solve the conservation equations for momentum, mass, species, charge and energy numerically. The conservation equations are applied to the solid, liquid and vapor phases in the bipolar plate and gas diffusion (GDL) and catalyst layers of a two-dimensional cross section of the cathode. The catalyst layer is assumed to be a finite domain and the water production in the catalyst layer is considered to be in the liquid form. The temperature distribution in the cathode is simulated and then the effects of the relative humidity of the air stream, the permeability of the cathode and the flow channel shoulder to channel width ratio are investigated. It is shown that the highest temperature change, both in the in-plane and across-the-plane directions, occurs in the GDL, while the highest temperature is reached in the catalyst layer. The distribution of temperature in the bipolar plate is shown to be relatively uniform due to the high thermal conductivity of the plate. A decrease in the inlet relative humidity of the air stream results in the decrease of the maximum temperature due to the absorption of heat during the evaporation of liquid water in the GDL and catalyst layer. The non-uniformity of the temperature distribution, especially in the catalyst layer, is observed with the increase of the permeability of the cathode. Similarly, the decrease of the channel shoulder to channel width ratio leads to a non-uniform distribution of temperature especially under the channel areas. Copyright © 2009 John Wiley & Sons, Ltd. [source] A parametric study of multi-phase and multi-species transport in the cathode of PEM fuel cellsINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 8 2008Nada Zamel Abstract In this study, a mathematical model is developed for the cathode of PEM fuel cells, including multi-phase and multi-species transport and electrochemical reaction under the isothermal and steady-state conditions. The conservation equations for mass, momentum, species and charge are solved using the commercial software COMSOL Multiphysics. The catalyst layer is modeled as a finite domain and assumed to be composed of a uniform distribution of supported catalyst, liquid water, electrolyte and void space. The Stefan,Maxwell equation is used to model the multi-species diffusion in the gas diffusion and catalyst layers. Owing to the low relative species' velocity, Darcy's law is used to describe the transport of gas and liquid phases in the gas diffusion and catalyst layers. A serpentine flow field is considered to distribute the oxidant over the active cathode electrode surface, with pressure loss in the flow direction along the channel. The dependency of the capillary pressure on the saturation is modeled using the Leverette function and the Brooks and Corey relation. A parametric study is carried out to investigate the effects of pressure drop in the flow channel, permeability, inlet relative humidity and shoulder/channel width ratio on the performance of the cell and the transport of liquid water. An inlet relative humidity of 90 and 80% leads to the highest performance in the cathode. Owing to liquid water evaporation, the relative humidity in the catalyst layer reaches 100% with an inlet relative humidity of 90 and 80%, resulting in a high electrolyte conductivity. The electrolyte conductivity plays a significant role in determining the overall performance up to a point. Further, the catalyst layer is found to be important in controlling the water concentration in the cell. The cross-flow phenomenon is shown to enhance the removal of liquid water from the cell. Moreover, a shoulder/channel width ratio of 1:2 is found to be an optimal ratio. A decrease in the shoulder/channel ratio results in an increase in performance and an increase in cross flow. Finally, the Leverette function leads to lower liquid water saturations in the backing and catalyst layers than the Brooks and Corey relation. The overall trend, however, is similar for both functions. Copyright © 2007 John Wiley & Sons, Ltd. [source] Functional respiratory anatomy of a deep-sea orbiniid polychaete from the Brine Pool NR-1 in the Gulf of MexicoINVERTEBRATE BIOLOGY, Issue 1 2001Stéphane Hourdez Abstract. An undescribed species of Orbiniidae (Annelida; Polychaeta) is found in large numbers associated with communities of the mussel, Bathymodiolus childressi at hydrocarbon seeps on the Louisiana slope (Gulf of Mexico). Their microhabitat is often hypoxic and sulfidic, which poses serious respiratory challenges for an aerobic metazoan. They display several anatomical features that are quite unusual for this family, which likely allow them to live in their food-rich, but oxygen-limited, habitat. The anterior gills are hypertrophied whereas the posterior gills are not. These anterior gills provide the worms with a large gill surface area (,9.9 cm2/g wet weight), which represents 90,95% of the total gill surface area. The gills contain two blood vessels: a central blood vessel, delimited by a coelomic epithelium, and an intra-epidermal vessel. The diffusion distance between this latter and the environment is only 3 ,-m in the anterior gills, which facilitates gas diffusion. Only the anterior gills are ciliated, which may also facilitate gas exchange across this respiratory surface. The gill cells also contain numerous mitochondria and other electron-dense organelles that might be involved in sulfide detoxification. [source] Allosteric properties of hemoglobin and the plasma membrane of the erythrocyte: New insights in gas transport and metabolic modulationIUBMB LIFE, Issue 2 2008Maria Cristina De Rosa Abstract Within the red blood cell the hemoglobin molecule is subjected to modulation mechanisms, namely homo- and heterotropic interactions, which optimize its functional behavior to the specific physiological requirements. At the cellular level, these modulation mechanisms are utilized to perform a number of other functions that are not minor with respect to the basic function of oxygen transport. Here we report some key examples concerning: (i) the interaction of hemoglobin with band 3 and its influence on glucose metabolism; (ii) the role of the ligand-linked quaternary transition of hemoglobin in the control of "NO bioactivity" and of gas diffusion; (iii) the interaction of plasma membrane with the various oxidative derivatives of the hemoglobin molecule. © 2008 IUBMB IUBMB Life, 60(2): 87,93, 2008 [source] Mathematical modeling of solid oxide fuel cells at high fuel utilization based on diffusion equivalent circuit modelAICHE JOURNAL, Issue 5 2010Cheng Bao Abstract Mass transfer and electrochemical phenomena in the membrane electrode assembly (MEA) are the core components for modeling of solid-oxide fuel cell (SOFC). The general MEA model is simply governed with the Stefan-Maxwell equation for multicomponent gas diffusion, Ohm's law for the charge transfer and the current-overpotential equation for the polarization calculation. However, it has obvious discrepancy at high-fuel utilization or high-current density. An advanced MEA model is introduced based on the diffusion equivalent circuit model. The main purpose is to correct the real-gas concentrations at the triple-phase boundary by assuming that the resistance of surface diffusion is in series with that of the gaseous bulk diffusion. Thus, it can obtain good prediction of cell performance in a wide range by avoiding the decrement of effective gas diffusivity via unreasonable increment of the electrode tortuosity in the general MEA model. The mathematical model has been validated in the cases of H2H2O, COCO2 and H2CO fuel system. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] Polymer plasticization using supercritical carbon dioxide,JOURNAL OF VINYL & ADDITIVE TECHNOLOGY, Issue 4 2008Febe Kusmanto The plasticizing effect of supercritical CO2 (scCO2) during the extrusion of polymers was investigated. A modified extrusion system was used to demonstrate the viscosity-reducing effect of scCO2 together with a capability to produce foam-free extrudate with selected polymers, including poly(vinyl chloride). Samples of extrudate and materials prepared off-line by using a pressure vessel were characterized by thermal, mechanical, and X-ray techniques. After gas diffusion from the polymer, there was no long-term effect on polymer structure and properties. J. VINYL ADDIT. TECHNOL., 2008. © 2008 Society of Plastics Engineers. [source] Oxygen dynamics during submergence in the halophytic stem succulent Halosarcia pergranulataPLANT CELL & ENVIRONMENT, Issue 7 2006O. PEDERSEN ABSTRACT This study elucidated O2 dynamics in shoots and roots of submerged Halosarcia pergranulata (Salicornioideae), a perennial halophytic stem succulent that grows on flood-prone mudflats of salt lakes. Oxygen within shoots and roots was measured using microelectrodes, for plants when waterlogged or completely submerged, with shoots in light or in darkness, in a controlled environment. Net photosynthesis (PN) when underwater, at a range of dissolved CO2 concentrations, was measured by monitoring O2 production rates by excised stems. The bulky nature and apparently low volume of gas-filled spaces of the succulent stems resulted in relatively high radial resistance to gas diffusion. At ambient CO2, quasi-steady state rates of PN by excised succulent stems were estimated to be close to zero; nevertheless, in intact plants, underwater photosynthesis provided O2 to tissues and led to radial O2 loss (ROL) from the roots, at least during the first several hours (the time period measured) after submergence or when light periods followed darkness. The influence of light on tissue O2 dynamics was confirmed in an experiment on a submerged plant in a salt lake in south-western Australia. In the late afternoon, partial pressure of O2 (pO2) in the succulent stem was 23.2 kPa (i.e. ,10% above that in the air), while in the roots, it was 6.2,9.8 kPa. Upon sunset, the pO2 in the succulent stems declined within 1 h to below detection, but then showed some fluctuations with the pO2 increasing to at most 2.5 kPa during the night. At night, pO2 in the roots remained higher than in the succulent stems, especially for a root with the basal portion in the floodwater. At sunrise, the pO2 increased in the succulent stems within minutes. In the roots, changes in the pO2 lagged behind those in the succulent stems. In summary, photosynthesis in stems of submerged plants increased the pO2 in the shoots and roots so that tissues experience diurnal changes in the pO2, but O2 from the H2O column also entered submerged plants. [source] |