Gas Density (gas + density)

Distribution by Scientific Domains


Selected Abstracts


Effect of Gas Density on the Hydrodynamics of Bubble Columns and Three-Phase Fluidized Beds

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2003
Arturo Macchi
Abstract Experiments were performed at ambient temperature and pressure in a 127 mm inner diameter column with a 55% wt. aqueous glycerol solution, 6-mm spherical borosilicate beads and four gases , helium, air, carbon dioxide and sulphur hexafluoride , giving a 35-fold gas density range. The dispersed bubble flow regime was sustained to higher gas velocities and gas holdups for denser gases. This finding appears to be due to the reduction of the maximum stable bubble size (i.e. enhanced bubble break-up), rather than to formation of smaller bubbles at the distributor with increasing gas density. The effect of gas density was significant both with and without the particles present, with gas holdup increasing, bed voidage increasing and liquid holdup decreasing with increasing gas density. The holdup correlations of Han et al. (1990) have been modified to incorporate the effect of gas density. On a mené des expériences à la température et à la pression ambiante dans une colonne de 127 mm de diamètre intérieur avec une solution de glycérol aqueux de 55 % en poids, des billes de verre de borosilicate sphériques de 6 mm et quatre gaz , hélium, air, gaz carbonique et hexafluorure de soufre , donnant une gamme de densité gazeuse multipliée par 35. Le régime d'écoulement bouillonnant dispersé est maintenu jusqu'à des vitesses et des rétentions de gaz supérieures pour les gaz plus denses. Ce résultat semble être dû à la réduction de la taille de bulle stable maximum (c.-à-d. une rupture de bulles améliorée), plutôt qu'à la formation de bulles plus petites au distributeur avec l'augmentation de la densité gazeuse. L'effet de la densité gazeuse est significatif avec ou sans la présence des particules, avec l'augmentation de la rétention de gaz, l'augmentation du vide du lit et la diminution de la rétention de liquide avec l'augmentation de la densité gazeuse. Les corrélations de rétention de Han et al. (1990) sont modifiées de sorte à introduire l'effet de la densité gazeuse. [source]


Ly, excess in high-redshift radio galaxies: a signature of star formation,

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
M. Villar-Martín
ABSTRACT About 54 per cent of radio galaxies at z, 3 and 8 per cent of radio galaxies at 2 ,z < 3 show unusually strong Ly, emission, compared with the general population of high-redshift (z, 2) radio galaxies. These Ly,-excess objects (LAEs) show Ly,/He ii values consistent with or above standard photoionization model predictions. We reject with confidence several scenarios to explain the unusual strength of Ly, in these objects: shocks, low nebular metallicities, high gas densities and absorption/scattering effects. We show that the most successful explanation is the presence of a young stellar population which provides the extra supply of ionizing photons required to explain the Ly, excess in at least the most extreme LAEs (probably in all of them). This interpretation is strongly supported by the tentative trend found by other authors for z, 3 radio galaxies to show lower ultraviolet rest-frame polarization levels, or the dramatic increase in the detection rate at submm wavelengths of z > 2.5 radio galaxies. The enhanced star formation activity in LAEs could be a consequence of a recent merger which has triggered both the star formation and the active galactic nucleus/radio activities. The measurement of unusually high Ly, ratios in the extended gas of some high-redshift radio galaxies suggests that star formation activity occurs in spatial scales of tens of kpc. We argue that, although the fraction of LAEs may be incompletely determined, both at 2 ,z < 3 and at z, 3, the much larger fraction of LAEs found at z, 3 is a genuine redshift evolution and not due to selection effects. Therefore, our results suggest that the radio galaxy phenomenon is more often associated with a massive starburst at z > 3 than at z < 3. [source]


Modelling CO formation in the turbulent interstellar medium

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2010
S. C. O. Glover
ABSTRACT We present results from high-resolution three-dimensional simulations of turbulent interstellar gas that self-consistently follow its coupled thermal, chemical and dynamical evolution, with a particular focus on the formation and destruction of H2 and CO. We quantify the formation time-scales for H2 and CO in physical conditions corresponding to those found in nearby giant molecular clouds, and show that both species form rapidly, with chemical time-scales that are comparable to the dynamical time-scale of the gas. We also investigate the spatial distributions of H2 and CO, and how they relate to the underlying gas distribution. We show that H2 is a good tracer of the gas distribution, but that the relationship between CO abundance and gas density is more complex. The CO abundance is not well-correlated with either the gas number density n or the visual extinction AV: both have a large influence on the CO abundance, but the inhomogeneous nature of the density field produced by the turbulence means that n and AV are only poorly correlated. There is a large scatter in AV, and hence CO abundance, for gas with any particular density, and similarly a large scatter in density and CO abundance for gas with any particular visual extinction. This will have important consequences for the interpretation of the CO emission observed from real molecular clouds. Finally, we also examine the temperature structure of the simulated gas. We show that the molecular gas is not isothermal. Most of it has a temperature in the range of 10,20 K, but there is also a significant fraction of warmer gas, located in low-extinction regions where photoelectric heating remains effective. [source]


The transverse proximity effect in the z, 2 Lyman , forest suggests quasi-stellar object episodic lifetimes of ,1 Myr

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2008
David Kirkman
ABSTRACT We look for signs of the H i transverse proximity effect in the spectra of 130 quasi-stellar object (QSO) pairs, most with transverse separations in the plane of the sky of 0.1,3 Mpc at z, 2.2. We expected to see a decrease in Ly, forest H i absorption in the spectrum of background QSOs near the position of foreground QSOs. Instead, we see no change in the absorption in front of the foreground QSOs, and we see evidence for a 50 per cent increase in the absorption out to 6 Mpc behind the foreground QSOs. Further, we see no change in the H i absorption along the line-of-sight to the foreground QSOs, the normal line-of-sight proximity effect. We may account for the lack of change in the H i absorption if the effect of extra ultraviolet photons is cancelled by higher gas density around QSOs. If so, the increase in absorption behind the QSOs then suggests that the higher gas density there is not cancelled by the UV radiation from the QSOs. We can explain our observations if QSOs have had their current UV luminosities for less than approximately a million years, a time-scale that has been suggested for accretion disc instabilities and gas depletion. [source]


Life in the last lane: star formation and chemical evolution in an extremely gas rich dwarf

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2008
Ayesha Begum
ABSTRACT We present an analysis of H i, H, and oxygen abundance data for NGC 3741. This galaxy has a very extended gas disc (,8.8 times the Holmberg radius), and a dark-to-luminous (i.e. stellar) mass ratio of ,149, which makes it one of the ,darkest' dwarf irregular galaxies known. However, its ratio of baryon (i.e. gas + stellar) mass to dark mass is typical of that in galaxies. Our new high-resolution H i images of the galaxy show evidence for a large-scale (purely gaseous) spiral arm and central bar. From our H i data, a rotation curve can be derived out to ,37,44 disc scalelengths in the J and B bands, respectively. This is just slightly short of the radius at which one would expect a Navarro,Frenk,White type rotation curve to start falling. The galaxy has an integrated star formation rate (SFR) of ,0.0034 M, yr,1, while the average SFR within the optical disc is ,0.0049 M, yr,1 kpc,2. Despite the gaseous spiral feature and the ongoing star formation, we find that the global gas density in NGC 3741 is significantly lower than the Toomre instability criterion. This is consistent with the behaviour seen in other dwarf galaxies. We also find that the SFR is consistent with that expected from the observed correlations between H i mass and SFR and the global Kennicutt,Schmidt law, respectively. We measure the oxygen abundance to be 12 + log(O/H) = 7.66 ± 0.10, which is consistent with that expected from the metallicity,luminosity relation, despite its extreme gas mass ratio. We also examine the issue of chemical evolution of NGC 3741 in the context of the closed-box model of chemical evolution. The effective oxygen yield of NGC 3741 is consistent with recent model estimates of closed-box yields, provided one assumes that the gas has been efficiently mixed all the way to the edge of the H i disc (i.e. greater than eight times the optical radius). This seems a priori unlikely. On the other hand, using a sample of galaxies with both interferometric H i maps and chemical abundance measurements, we find that the effective yield is anticorrelated with the total dynamical mass, as expected in leaky box models. [source]


The impact of mergers on relaxed X-ray clusters , I. Dynamical evolution and emergent transient structures

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2006
Gregory B. Poole
ABSTRACT We report on the analysis of a suite of smoothed particle hydrodynamics simulations (incorporating cooling and star formation) of mergers involving idealized X-ray clusters whose initial conditions resemble relaxed clusters with cool compact cores observed by Chandra and XMM. The simulations sample the most-interesting, theoretically plausible, range of impact parameters and progenitor mass ratios. We find that all mergers evolve via a common progression. We illustrate this progression in the projected gas density, X-ray surface brightness, Sunyaev,Zel'dovich, temperature, and gas-entropy maps. Several different classes of transient ,cold front' like features can arise over the course of a merger. Each class is distinguished by a distinct morphological signature and physical cause. We find that all these classes are present in Chandra and XMM observations of merging systems and propose a naming scheme for these features: ,comet-like' tails, bridges, plumes, streams and edges. In none of the cases considered do the initial cool compact cores of the primary and the secondary get destroyed during the course of the mergers. Instead, the two remnant cores eventually combine to form a new core that, depending on the final mass of the remnant, can have a greater cooling efficiency than either of its progenitors. We quantify the evolving morphology of our mergers using centroid variance, power ratios and offset between the X-ray and the projected mass maps. We find that the centroid variance best captures the dynamical state of the cluster. It also provides an excellent indicator of how far the system is from virial and hydrostatic equilibrium. Placing the system at z= 0.1, we find that all easily identified observable traces of the secondary disappear from a simulated 50-ks Chandra image following the second pericentric passage. The system, however, takes an additional ,2 Gyr to relax and virialize. Observationally, the only reliable indicator of a system in this state is the smoothness of its X-ray surface brightness isophotes, not temperature fluctuations. Temperature fluctuations at the level of ,T/T, 20 per cent, can persist in the final systems well past the point of virialization, suggesting that the existence of temperature fluctuations, in and of themselves, does not necessarily indicate a disturbed or unrelaxed system. [source]


Turbulent gas motions in galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2005
K. Dolag
ABSTRACT Smoothed particle hydrodynamics (SPH) employs an artificial viscosity to properly capture hydrodynamic shock waves. In its original formulation, the resulting numerical viscosity is large enough to suppress structure in the velocity field on scales well above the nominal resolution limit, and to damp the generation of turbulence by fluid instabilities. This could artificially suppress random gas motions in the intracluster medium (ICM), which are driven by infalling structures during the hierarchical structure formation process. We show that this is indeed the case by analysing results obtained with an SPH formulation where an individual, time-variable viscosity is used for each particle, following a suggestion by Morris & Monaghan. Using test calculations involving strong shocks, we demonstrate that this scheme captures shocks as well as the original formulation of SPH, but, in regions away from shocks, the numerical viscosity is much smaller. In a set of nine high-resolution simulations of cosmological galaxy cluster formation, we find that this low-viscosity formulation of SPH produces substantially higher levels of turbulent gas motions in the ICM, reaching a kinetic energy content in random gas motions (measured within a 1-Mpc cube) of up to 5,30 per cent of the thermal energy content, depending on cluster mass. This also has significant effects on radial gas profiles and bulk cluster properties. We find a central flattening of the entropy profile and a reduction of the central gas density in the low-viscosity scheme. As a consequence, the bolometric X-ray luminosity is decreased by about a factor of 2. However, the cluster temperature profile remains essentially unchanged. Interestingly, this tends to reduce the differences seen in SPH and adaptive mesh refinement simulations of cluster formation. Finally, invoking a model for particle acceleration by magnetohydrodynamics waves driven by turbulence, we find that efficient electron acceleration and thus diffuse radio emission can be powered in the clusters simulated with the low-viscosity scheme provided that more than 5,10 per cent of the turbulent energy density is associated with fast magneto-sonic modes. [source]


The temperature of the intergalactic medium and the Compton y parameter

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2004
Pengjie Zhang
ABSTRACT The thermal Sunyaev,Zeldovich (SZ) effect directly probes the thermal energy of the Universe. Its precision modelling and future high-accuracy measurements will provide a powerful way to constrain the thermal history of the Universe. In this paper, we focus on the precision modelling of the gas density weighted temperature and the mean SZ Compton y parameter. We run high-resolution adiabatic hydrodynamic simulations adopting the WMAP cosmology to study the temperature and density distribution of the intergalactic medium (IGM). To quantify possible simulation limitations, we run n=,1, , 2 self-similar simulations. Our analytical model on is based on energy conservation and matter clustering and has no free parameter. Combining both simulations and analytical models thus provides the precision modelling of and . We find that the simulated temperature probability distribution function and shows good convergence. For the WMAP cosmology, our highest-resolution simulation (10243 cells, 100 Mpc h,1 box size) reliably simulates with better than 10 per cent accuracy for z, 0.5. Toward z= 0, the simulation mass-resolution effect becomes stronger and causes the simulated to be slightly underestimated (at z= 0, ,20 per cent underestimated). Since is mainly contributed by the IGM at z, 0.5, this simulation effect on is no larger than ,10 per cent. Furthermore, our analytical model is capable of correcting this artefact. It passes all tests of self-similar simulations and WMAP simulations and is able to predict and to several per cent accuracy. For a low matter density ,CDM cosmology, the present is 0.32 (,8/0.84)(,m/0.268) keV, which accounts for 10,8 of the critical cosmological density and 0.024 per cent of the cosmic microwave background (CMB) energy. The mean y parameter is 2.6 × 10,6 (,8/0.84)(,m/0.268). The current upper limit of y < 1.5 × 10,5 measured by FIRAS has already ruled out combinations of high ,8, 1.1 and high ,m, 0.5. [source]


Entropy injection as a global feedback mechanism

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2003
S. Peng Oh
ABSTRACT Both pre-heating of the intergalactic medium and radiative cooling of low entropy gas have been proposed to explain the deviation from self-similarity in the cluster LX,TX relation and the observed entropy floor in these systems. However, severe overcooling of gas in groups is necessary for radiative cooling alone to explain the observations. Non-gravitational entropy injection must therefore still be important in these systems. We point out that, on scales of groups and below, gas heated to the required entropy floor cannot cool in a Hubble time, regardless of its subsequent adiabatic compression. Pre-heating therefore shuts off the gas supply to galaxies, and should be an important global feedback mechanism for galaxy formation. Constraints on global gas cooling can be placed from the joint evolution of the comoving star formation rate and neutral gas density. Pre-heating at high redshift can be ruled out; however, the data do not rule out passive gas consumption without inflow as z, 2. Because for pre-heated gas tcool > tdyn, we speculate that pre-heating could play a role in determining the Hubble sequence; at a given mass scale, high , peaks in the density field collapse early to form ellipticals, while low , peaks collapse late and quiescently accrete pre-heated gas to form spirals. The entropy produced by large-scale shock-heating of the intergalatic medium is significant only at late times, z < 1, and cannot produce these effects. [source]


Stationary models for fast and slow logarithmic spiral patterns in disc galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2002
Yu-Qing Lou
A recent wavelet analysis on multiwavelength image data of the nearby spiral galaxy NGC 6946 revealed a multi-arm spiral structure that persists well into the outer differentially rotating disc region. The extended spiral arms in polarized radio-continuum emission and in red light appear interlaced with each other, while the spiral arms in emissions of total radio continuum, of H, from H ii regions, and of neutral hydrogen all trace the red-light spiral arms, although to a somewhat lesser extent. The key issue now becomes how to sustain extended slow magnetohydrodynamic (MHD) density wave features in a thin magnetized disc with a flat rotation curve. We describe here a theoretical model to examine stationary non-axisymmetric logarithmic spiral configurations constructed from a background equilibrium of a magnetized singular isothermal disc (MSID) with a flat rotation curve and with a non-force-free azimuthal magnetic field. It is found analytically that two types of stationary spiral MSID configurations may exist, physically corresponding to the two possibilities of fast and slow spiral MHD density waves. Such stationary MHD density waves are possible only at proper MSID rotation speeds. For the fast MSID configuration, logarithmic spiral enhancements of magnetic field and gas density are either in phase in the tight-winding regime or shifted with a spatial phase difference ,,/2 for open spiral structures. For the slow MSID configuration, logarithmic spiral enhancements of magnetic field and gas density are either out of phase in the tight-winding regime or shifted with a spatial phase difference for open spiral structures and persist in a flat rotation curve. For NGC 6946, several pertinent aspects of the slow MSID scenario with stationary logarithmic spiral arms are discussed. The two exact solutions can be also utilized to test relevant numerical MHD codes. [source]


Fluid Dynamic Studies in Support of an Industrial Three-Phase Fluidized Bed Hydroprocessor

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2003
Craig A. McKnight
Abstract Reducing gas hold-up has been identified as a key objective to improve the performance of Syncrude's LC-FinerSM unit. Redesign of the liquid recycle pan in the freeboard region, aided by multiphase CFD simulation and tests in a kerosene cold model experimental system, led to reduced gas hold-ups. The addition of an anti-foam agent did not provide any improvement. Cold-flow dimensional similitude tests demonstrated the importance of gas density, distributor geometry, and interfacial phenomena. Grid redesign was undertaken to diminish swirl and provide improved radial distribution of gas. Dispersion tests indicate favourable catalyst mixing in the reactors. La réduction de la rétention de gaz a été déterminée comme étant un objectif clé dans l'amélioration de la performance de l'unité LC-FinerMD de Syncrude. Une nouvelle conception de la cuve de recyclage de liquide dans la région d'espace libre, aidée par une simulation CFD polyphasique et des tests dans une maquette de laboratoire utilisant du kérosène, mène à une réduction des rétentions de gaz. L'ajout d'un agent anti-mousse n'apporte aucune amélioration. Des tests de similitude dimensionnelle de l'écoulement démontrent l'importance de la masse volumique du gaz, de la géométrie du distributeur et des phénomènes interfaciaux. On a revu la conception de la grille afin de diminuer le tourbillon et d'améliorer la distribution radiale de gaz. Les tests de dispersion indiquent un mélange de catalyseur favorable dans les réacteurs. [source]


Effect of Gas Density on the Hydrodynamics of Bubble Columns and Three-Phase Fluidized Beds

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2003
Arturo Macchi
Abstract Experiments were performed at ambient temperature and pressure in a 127 mm inner diameter column with a 55% wt. aqueous glycerol solution, 6-mm spherical borosilicate beads and four gases , helium, air, carbon dioxide and sulphur hexafluoride , giving a 35-fold gas density range. The dispersed bubble flow regime was sustained to higher gas velocities and gas holdups for denser gases. This finding appears to be due to the reduction of the maximum stable bubble size (i.e. enhanced bubble break-up), rather than to formation of smaller bubbles at the distributor with increasing gas density. The effect of gas density was significant both with and without the particles present, with gas holdup increasing, bed voidage increasing and liquid holdup decreasing with increasing gas density. The holdup correlations of Han et al. (1990) have been modified to incorporate the effect of gas density. On a mené des expériences à la température et à la pression ambiante dans une colonne de 127 mm de diamètre intérieur avec une solution de glycérol aqueux de 55 % en poids, des billes de verre de borosilicate sphériques de 6 mm et quatre gaz , hélium, air, gaz carbonique et hexafluorure de soufre , donnant une gamme de densité gazeuse multipliée par 35. Le régime d'écoulement bouillonnant dispersé est maintenu jusqu'à des vitesses et des rétentions de gaz supérieures pour les gaz plus denses. Ce résultat semble être dû à la réduction de la taille de bulle stable maximum (c.-à-d. une rupture de bulles améliorée), plutôt qu'à la formation de bulles plus petites au distributeur avec l'augmentation de la densité gazeuse. L'effet de la densité gazeuse est significatif avec ou sans la présence des particules, avec l'augmentation de la rétention de gaz, l'augmentation du vide du lit et la diminution de la rétention de liquide avec l'augmentation de la densité gazeuse. Les corrélations de rétention de Han et al. (1990) sont modifiées de sorte à introduire l'effet de la densité gazeuse. [source]


A study of major mergers using a multi-phase ISM code

ASTRONOMISCHE NACHRICHTEN, Issue 9-10 2009
J. Weniger
Abstract Galaxy interactions are a common phenomenon in clusters of galaxies. Especially major mergers are of particular importance, because they can change the morphological type of galaxies. They have an impact on the mass function of galaxies and they trigger star formation , the main driver of the Galactic Matter Cycle. Therefore, we conducted a study of major mergers by means of a multi-phase ISM code. This code is based on a TREE-SPH-code combined with a sticky particle method allowing for star formation controlled by the properties of a multi-phase ISM. This is in contrast to the usually implemented Schmidt law depending mainly on the gas density. Previously, this code was used on isolated galaxies. Since our star formation recipe is not restricted to a special type of galaxy, it is interesting to apply it to interacting galaxies, too. Our study on major mergers includes a research of global properties of the interacting system, namely the star formation rate and the star formation efficiency, the evaporation and condensation rates, as well as the mass exchange of distinct components, namely stars, diffuse ISM, and clouds. Investigating these properties provides insight to interrelations between various physical processes. The results indicate that the star formation efficiency as well as the evaporation and condensation rates are influenced by the interaction (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]