Home About us Contact | |||
Gamma Chain (gamma + chain)
Selected AbstractsDifferential expression of mast cell characteristics in human myeloid cell linesEXPERIMENTAL DERMATOLOGY, Issue 9 2004Pia Welker Abstract:, In order to better understand the mechanisms governing display of mast cell characteristics in human myeloid cells, we have studied the mast cell phenotype in human promyelocytic (HL-60) and myelocytic (U-937, TPH-1) vs. basophilic (KU-812) and mast cell (HMC-1) lines, in part also in skin mast cells and blood monocytes, at mRNA and protein level before and after stimulation with mast cell growth factors. In unstimulated cells, mRNA for the stem cell factor (SCF) receptor c-kit and the gamma chain of the high-affinity IgE receptor (Fc,RI) was noted in all cells studied. Like mast and basophilic cells, THP-1 cells expressed the Fc,RI, and , chains and weakly histidine decarboxylase (HDC), but they lacked mRNA for mast cell-specific proteases [tryptase, chymase, carboxypeptidase A (CPA)]. In contrast, HL-60 and U-937 cells lacked Fc,RI,, but expressed tryptase and chymase, HL-60 cells also CPA. KU-812 cells failed to express the basophil-specific marker 2D7. After a 10-day culture with SCF or fibroblast supernatants, baseline mRNA expression of most mast cell characteristics was upregulated, whereas c-kit mRNA expression decreased in all but THP-1 cells. Differential mRNA expression of Fc,RI vs. protease (tryptase) was confirmed at protein level by immunocytochemistry and enzymatic activity. KU-812 cells are thus closest to skin mast cells in that they express all molecules studied, except for chymase, followed by THP-1 cells that lack all mast cell proteases. In contrast, HL-60 and U-937 cells fail to express the Fc,RI, and , chains but express most mast cell proteases. The selective and differential expression of mast cell characteristics in human myeloid cell lines suggests that induction of the mast cell phenotype is regulated by several independent genes and that mast cells and basophils branch off at early and distinct points of myeloid development. [source] Mutations in severe combined immune deficiency (SCID) due to JAK3 deficiencyHUMAN MUTATION, Issue 4 2001Luigi D. Notarangelo Abstract During the last 10 years, an increasing number of genes have been identified whose abnormalities account for primary immunodeficiencies, with defects in development and/or function of the immune system. Among them is the JAK3 -gene, encoding for a tyrosine kinase that is functionally coupled to cytokine receptors which share the common gamma chain. Defects of this gene cause an autosomal recessive form of severe combined immunodeficiency with almost absent T-cells and functionally defective B-cells (T,B+ SCID). Herewith, we present molecular information on the first 27 unique mutations identified in the JAK3 gene, including clinical data on all of the 23 affected patients reported so far. A variety of mutations scattered throughout all seven functional domains of the protein, and with different functional effects, have been identified. Availability of a molecular screening test, based on amplification of genomic DNA, facilitates the diagnostic approach, and has permitted recognition that JAK3 deficiency may also be associated with atypical clinical and immunological features. Development of a structural model of the JAK3 kinase domain has allowed characterization of the functional effects of the various mutations. Most importantly, molecular analysis at the JAK3 locus results in improved genetic counseling, allows early prenatal diagnosis, and prompts appropriate treatment (currently based on hematopoietic stem cell transplantation) in affected families. Hum Mutat 18:255,263, 2001. © 2001 Wiley-Liss, Inc. [source] Clinical and genetic heterogeneity in Omenn syndrome and severe combined immune deficiencyPEDIATRIC TRANSPLANTATION, Issue 2 2009Tanja A. Gruber Abstract:, OS has been described as a clinical phenotype in infants characterized by SCID, diffuse erythroderma, and other distinct features. The pathogenesis is secondary to autologous, auto-reactive T cells produced as rare escapees from the SCID blockade. Mutations in either the RAG1 or RAG2 gene that lead to partial recombinase activity are responsible for many of the patients with these clinical features. We report on two patients, one with an atypical phenotype of OS (absence of rash but presence of other typical features) who harbored a previously undescribed mutation in RAG1, and a second who had many of the classic features of OS but was found to have a mutation in the common gamma chain (,c) cytokine receptor gene. These cases highlight the clinical and genetic heterogeneity of OS. [source] Phage ,C31 integrase-mediated genomic integration of the common cytokine receptor gamma chain in human T-cell linesTHE JOURNAL OF GENE MEDICINE, Issue 5 2006Yoshinori Ishikawa Abstract Background X-linked severe combined immunodeficiency (SCID-X1, X-SCID) is a life-threatening disease caused by a mutated common cytokine receptor , chain (,c) gene. Although ex vivo gene therapy, i.e., transduction of the ,c gene into autologous CD34+ cells, has been successful for treating SCID-X1, the retrovirus vector-mediated transfer allowed dysregulated integration, causing leukemias. Here, to explore an alternative gene transfer methodology that may offer less risk of insertional mutagenesis, we employed the ,C31 integrase-based integration system using human T-cell lines, including the ,c-deficient ED40515(-). Methods A ,C31 integrase and a neor gene expression plasmid containing the ,C31 attB sequence were co-delivered by electroporation into Jurkat cells. After G418 selection, integration site analyses were performed using linear amplification mediated-polymerase chain reaction (LAM-PCR). ED40515(-) cells were also transfected with a ,c expression plasmid containing attB, and the integration sites were determined. IL-2 stimulation was used to assess the functionality of the transduced ,c in an ED40515(-)-derived clone. Results Following co-introduction of the ,C31 integrase expression plasmid and the plasmid carrying attB, the efficiency of integration into the unmodified human genome was assessed. Several integration sites were characterized, including new integration sites in intergenic regions on chromosomes 13 and 18 that may be preferred in hematopoietic cells. An ED40515(-) line bearing the integrated ,c gene exhibited stable expression of the ,c protein, with normal IL-2 signaling, as assessed by STAT5 activation. Conclusions This study supports the possible future use of this ,C31 integrase-mediated genomic integration strategy as an alternative gene therapy approach for treating SCID-X1. Copyright © 2006 John Wiley & Sons, Ltd. [source] Activation of the JAK/STAT Pathway in Epstein Barr Virus+ -Associated Posttransplant Lymphoproliferative Disease: Role of Interferon-,AMERICAN JOURNAL OF TRANSPLANTATION, Issue 10 2009M. Vaysberg Epstein Barr virus (EBV) is associated with B-cell lymphomas in posttransplant lymphoproliferative disease (PTLD). Latent membrane protein 1 (LMP1), the major oncogenic protein of EBV, promotes tumorigenesis through activation of NF-,B, Erk, p38, JNK and Akt. The Jak/STAT signal transduction pathway is also constitutively active in PTLD-associated EBV+ B-cell lymphomas. Here we determine the mechanism of Jak/STAT activation in EBV+ B-cell lymphomas and the role of LMP1 in this process. Immunoprecipitation studies revealed no direct interaction of LMP1 and JAK3, but known associations between JAK3 and common gamma chain, and between LMP1 and TRAF3, were readily detected in EBV+ B cell lines from patients with PTLD. An inducible LMP1 molecule expressed in EBV, BL41 Burkitt's cells demonstrated STAT activation only after prolonged LMP1 signaling. While LMP1 induced IFN-, production in BL41 cells, IFN-, receptor blockade and IFN-, neutralization prior to LMP1 activation markedly decreased STAT1 activation and expression of LMP1-driven IFN-, inducible genes. Understanding the mechanisms by which EBV induces cellular signal transduction pathways may facilitate development of new treatments for PTLD. [source] Production and partial characterization of mouse monoclonal antibodies recognizing common cytokine receptor gamma chain (,c) of human, mouse and primate origin,APMIS, Issue 10 2001KAROLINA LUNDIN Monoclonal antibodies specific for the common cytokine receptor gamma chain, ,c, were produced using traditional hybridoma technology. Fusion of P3X63-Ag8.653 myeloma cells with splenocytes from Balb/c mice immunized with Spodoptera frugiperda insect cells infected with the recombinant baculovirus VL1392-hIL-2R, resulted in several hybridoma cell clones producing monoclonal ,c -specific antibodies. Four of these antibody-producing clones, IIIC3, IIIE8, IG3 and IF10C5, were further characterized by immunoblotting, flow cytometry and ELISA. Data are presented demonstrating that the generated monoclonal antibodies can identify the extracellular domain of the common cytokine receptor , chain of human and mouse origin, and two of the antibodies recognize ,c of primate origin as well. [source] |