Galactic Centre (galactic + centre)

Distribution by Scientific Domains


Selected Abstracts


Quantitative analysis of clumps in the tidal tails of star clusters

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2009
A. Just
ABSTRACT Tidal tails of star clusters are not homogeneous but show well-defined clumps in observations as well as in numerical simulations. Recently, an epicyclic theory for the formation of these clumps was presented. A quantitative analysis was still missing. We present a quantitative derivation of the angular momentum and energy distribution of escaping stars from a star cluster in the tidal field of the Milky Way and derive the connection to the position and width of the clumps. For the numerical realization we use star-by-star N -body simulations. We find a very good agreement of theory and models. We show that the radial offset of the tidal arms scales with the tidal radius, which is a function of cluster mass and the rotation curve at the cluster orbit. The mean radial offset is 2.77 times the tidal radius in the outer disc. Near the Galactic Centre the circumstances are more complicated, but to lowest order the theory still applies. We have also measured the Jacobi energy distribution of bound stars and showed that there is a large fraction of stars (about 35 per cent) above the critical Jacobi energy at all times, which can potentially leave the cluster. This is a hint that the mass loss is dominated by a self-regulating process of increasing Jacobi energy due to the weakening of the potential well of the star cluster, which is induced by the mass loss itself. [source]


A hybrid N -body code incorporating algorithmic regularization and post-Newtonian forces

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
S. Harfst
ABSTRACT We describe a novel N -body code designed for simulations of the central regions of galaxies containing massive black holes. The code incorporates Mikkola's ,algorithmic' chain regularization scheme including post-Newtonian terms up to PN2.5 order. Stars moving beyond the chain are advanced using a fourth-order integrator with forces computed on a GRAPE board. Performance tests confirm that the hybrid code achieves better energy conservation, in less elapsed time, than the standard scheme and that it reproduces the orbits of stars tightly bound to the black hole with high precision. The hybrid code is applied to two sample problems: the effect of finite- N gravitational fluctuations on the orbits of the S-stars, and inspiral of an intermediate-mass black hole into the Galactic Centre. [source]


The impact of radio feedback from active galactic nuclei in cosmological simulations: formation of disc galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
Takashi Okamoto
ABSTRACT In this paper, we present a new implementation of feedback due to active galactic nuclei (AGN) in cosmological simulations of galaxy formation. We assume that a fraction of jet energy, which is generated by an AGN, is transferred to the surrounding gas as thermal energy. Combining a theoretical model of mass accretion on to black holes with a multiphase description of star-forming gas, we self-consistently follow evolution of both galaxies and their central black holes. The novelty in our model is that we consider two distinct accretion modes: standard radiatively efficient thin accretion discs and radiatively inefficient accretion flows which we will generically refer to as RIAFs; motivated by theoretical models for jet production in accretion discs, we assume that only the RIAF is responsible for the AGN feedback. The focus of this paper is to investigate the interplay between galaxies and their central black holes during the formation of a disc galaxy. We find that, after an initial episode of bursting star formation, the accretion rate on to the central black hole drops so that the accretion disc switches to a RIAF structure. At this point, the feedback from the AGN becomes efficient and slightly suppresses star formation in the galactic disc and almost completely halts star formation in the bulge. This suppression of the star formation regulates mass accretion on to the black hole and associated AGN feedback. As a result, the nucleus becomes a stochastically fuelled low-luminosity AGN (Seyfert galaxy) with recurrent short-lived episodes of activity after the star bursts. During the ,on' events, the AGN produces reasonably powerful jets (radio-loud state) and is less luminous than the host galaxy, while in the ,off' phase, the nucleus is inactive and ,radio quiet'. Our model predicts several properties of the low-luminosity AGN including the bolometric luminosity, jet powers, the effect on kpc scale of the radio jet and the AGN lifetime, which are in broad agreement with observations of Seyfert galaxies and their radio activity. We also find that the ratios between the central black hole mass and the mass of the host spheroid at z= 0 are ,10,3 regardless of the strength of either supernova feedback or AGN feedback because the radiation drag model directly relates the star formation activity in the Galactic Centre and the mass accretion rate on to the central black hole. [source]


Tracing intermediate-mass black holes in the Galactic Centre

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
U. Löckmann
ABSTRACT We have developed a new method for post-Newtonian, high-precision integration of stellar systems containing a super-massive black hole (SMBH), splitting the forces on a particle between a dominant central force and perturbations. We used this method to perform fully collisional N -body simulations of inspiralling intermediate-mass black holes (IMBHs) in the centre of the Milky Way. We considered stellar cusps of different power-law indices and analysed the effects of IMBHs of different masses, all starting from circular orbits at an initial distance of 0.1 pc. Our simulations show how IMBHs deplete the central cusp of stars, leaving behind a flatter cusp with slope consistent with what has recently been observed. If an additional IMBH spirals into such a flat cusp, it can take 50 Myr or longer to merge with the central SMBH, thus allowing for direct observation in the near future. The final merger of the two black holes involves gravitational wave radiation which may be observable with planned gravitational wave detectors. Furthermore, our simulations reveal detailed properties of the hypervelocity stars (HVSs) created, and how generations of HVSs can be used to trace IMBHs in the Galactic Centre. We find that significant rotation of HVSs (which would be evidence for an IMBH) can only be expected among very fast stars (v > 1000 km s,1). Also, the probability of creating a hypervelocity binary star is found to be very small. [source]


Kinematics of hypervelocity stars in the triaxial halo of the Milky Way

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
Qingjuan Yu
ABSTRACT Hypervelocity stars (HVSs) ejected by the massive black hole at the Galactic Centre have unique kinematic properties compared to other halo stars. Their trajectories will deviate from being exactly radial because of the asymmetry of the Milky Way potential produced by the flattened disc and the triaxial dark matter halo, causing a change of angular momentum that can be much larger than the initial small value at injection. We study the kinematics of HVSs and propose an estimator of dark halo triaxiality that is determined only by instantaneous position and velocity vectors of HVSs at large Galactocentric distances (r, 50 kpc). We show that, in the case of a substantially triaxial halo, the distribution of deflection angles (the angle between the stellar position and velocity vector) for HVSs on bound orbits is spread uniformly over the range 10°,180°. Future astrometric and deep wide-field surveys should measure the positions and velocities of a significant number of HVSs, and provide useful constraints on the shape of the Galactic dark matter halo. [source]


Evolution of the 3.3-,m emission feature in the Red Rectangle

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2003
In-Ok Song
ABSTRACT Medium-resolution infrared spectroscopic observations of the biconical Red Rectangle nebula in the region of the 3.3-,m unidentified infrared (UIR) emission band are reported. The data were recorded at UKIRT using CGS4 and have allowed the peak wavelength, width, profile and intensity of the 3.3-,m feature to be investigated as a function of offset from the central star HD 44179. Analysis of the profile of the feature along the north-western bicone interface shows an evolution from Type 2 to Type 1 in the classification of Tokunaga et al. The 3.3-,m band recorded on-star shows a close fit to a Lorentzian profile, possibly suggesting a single class of carriers. Subtraction of the Lorentzian fit to the on-star spectrum from the spectrum at each offset reveals a new ,3.28'-,m emission feature that grows in intensity relative to the main 3.3-,m band as a function of distance from the central star. The 3.28-,m emission band at large offset appears to correspond well in wavelength and FWHM with an absorption feature seen towards the Galactic Centre. [source]


Simulations of the heating of the Galactic stellar disc

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2002
Jyrki Hänninen
ABSTRACT The velocity dispersion of nearby stars in the Galactic disc is well known to increase substantially with age; this is the so-called age,velocity relation, and is interpreted as a ,heating' of the disc as a function of time. We have studied the heating of the Galactic stellar disc caused by giant molecular clouds and halo black holes, via simulations of the orbits of tracer stars embedded in a patch of the local Galactic disc. We examine a range of masses and number densities of the giant molecular cloud and halo black hole perturbers. The heating of the stellar disc in the simulations is fitted with a simple power law of the form ,,t,, where , is the velocity dispersion of the tracer stars as a function of time, t. We also fit this form to the best determinations of the increase in the velocity dispersion as a function of time as derived from stars in the solar neighbourhood for which ages can be reliably assigned. Observationally, , is found to lie in the range 0.3,0.6, i.e. it remains poorly constrained and its determination is probably still dominated by systematic errors. Better constrained observationally is the ratio of the velocity dispersions of the stars in the vertical z and horizontal x directions (i.e. towards the Galactic Centre), ,z/,x= 0.5 ± 0.1. For the heating of the stellar disc caused by giant molecular clouds (GMCs) we derive a heating ,,t0.21, which differs somewhat from early (analytic) studies in which ,,t1/4. This confirms the well-known results that there are insufficient GMCs to heat the Galactic disc appropriately. A range of dark halo black hole scenarios are verified to heat the stellar disc as ,,t1/2 (as expected from analytical studies), and give ,z/,x in the range 0.5,0.6, which is consistent with observations. Black holes with a mass of 107 M, are our favoured disc heaters, although they are only marginally consistent with observations. Simulations featuring a combination of giant molecular clouds and halo black holes can explain the observed heating of the stellar disc, but since other perturbing mechanisms, such as spiral arms, are yet to be included, we regard this solution as being ad hoc. [source]


Stellar dynamical evidence against a cold disc origin for stars in the Galactic Centre

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY: LETTERS (ELECTRONIC), Issue 1 2008
Jorge Cuadra
ABSTRACT Observations of massive stars within the central parsec of the Galaxy show that, while most stars orbit within a well-defined disc, a significant fraction have large eccentricities and/or inclinations with respect to the disc plane. Here, we investigate whether this dynamically hot component could have arisen via scattering from an initially cold disc , the expected initial condition if the stars formed from the fragmentation of an accretion disc. Using N -body methods, we evolve a variety of flat, cold, stellar systems, and study the effects of initial disc eccentricity, primordial binaries, very massive stars and intermediate mass black holes. We find, consistent with previous results, that a circular disc does not become eccentric enough unless there is a significant population of undetected 100,1000 M, objects. However, since fragmentation of an eccentric disc can readily yield eccentric stellar orbits, the strongest constraints come from inclinations. We show that none of our initial conditions yields the observed large inclinations, regardless of the initial disc eccentricity or the presence of massive objects. These results imply that the orbits of the young massive stars in the Galactic Centre are largely primordial, and that the stars are unlikely to have formed as a dynamically cold disc. [source]


Monitoring lensed starlight emitted close to the Galactic centre

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2004
Adi Nusser
ABSTRACT We describe the feasibility of detecting the gravitational deflection of light emitted by stars moving around the massive object at the Galactic centre. Light reaching us from an orbiting star can pass closer to the large central mass than the star itself, so the central potential is in principle constrained to a smaller radius by lensing rather than by orbit fitting. A mass of 4.3 × 106 M, causes a 0.1,2 mas deflection in the apparent position of orbiting stars in a cone of diameter 10° as seen from the central mass. The distance to the centre of the Galaxy is uniquely constrained from such measurements because lensing deflections depend on the ratio rg/R0 of the Schwarzschild radius to the distance to the black hole, R0, whereas the ratio rg/R30 is obtained by fitting the shapes of the orbits. Deflection measurements are complimentary to observations of radial velocities of stars which constrain the ratio rg/R0 in the framework of Newtonian gravity. [source]


Two measures of the shape of the dark halo of the Milky Way

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2000
Rob P. Olling
In order to test the reliability of determinations of the shapes of dark-matter haloes of the galaxies, we have made such measurements for the Milky Way by two independent methods. First, we have combined the measurements of the overall mass distribution of the Milky Way derived from its rotation curve and the measurements of the amount of dark matter in the solar neighbourhood obtained from stellar kinematics to determine the flattening of the dark halo. Secondly, we have used the established technique based on the variation in thickness of the Milky Way's H i layer with radius: by assuming that the H i gas is in hydrostatic equilibrium in the gravitational potential of a galaxy, one can use the observed flaring of the gas layer to determine the shape of the dark halo. These techniques are found to produce a consistent estimate for the flattening of the dark-matter halo, with a shortest-to-longest axis ratio of q,0.8, but only if one adopts somewhat non-standard values for the distance to the Galactic centre, R0, and the local Galactic rotation speed, ,0. For consistency, one requires values of R0,7.6 kpc and ,0,190 km s,1. The results depend on the Galactic constants because the adopted values affect both distance measurements within the Milky Way and the shape of the rotation curve, which, in turn, alter the inferred halo shape. Although differing significantly from the current IAU-sanctioned values, these upper limits are consistent with all existing observational constraints. If future measurements confirm these lower values for the Galactic constants, then the validity of the gas-layer-flaring method will be confirmed. Further, dark-matter candidates such as cold molecular gas and massive decaying neutrinos, which predict very flat dark haloes with q,0.2, will be ruled out. Conversely, if the Galactic constants were found to be close to the more conventional values, then there would have to be some systematic error in the methods for measuring dark halo shapes, so the existing modelling techniques would have to be viewed with some scepticism. [source]


The dynamical formation of LMXBs in dense stellar environments: globular clusters and the inner bulge of M31

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
R. Voss
ABSTRACT The radial distribution of luminous (LX > 1036 erg s,1) X-ray point sources in the bulge of M31 is investigated using archival Chandra observations. We find a significant increase in the specific frequency of X-ray sources, per unit stellar mass, within 1 arcmin from the centre of the galaxy. The radial distribution of surplus sources in this region follows the ,2* law, suggesting that they are low-mass X-ray binaries (LMXBs) formed dynamically in the dense inner bulge. We investigate dynamical formation of LMXBs, paying particular attention to the high-velocity regime characteristic for galactic bulges, which has not been explored previously. Our calculations suggest that the majority of the surplus sources are formed in tidal captures of black holes by main-sequence stars of low mass, M*, 0.3,0.4 M,, with some contribution of neutron star (NS) systems of same type. Due to the small size of the accretion discs, a fraction of such systems may be persistent X-ray sources. Some of the sources may be ultracompact X-ray binaries with helium star/white dwarf companions. We also predict a large number of faint transients, both NS and BH systems, within ,1 arcmin from the M31 galactic centre. Finally, we consider the population of dynamically formed binaries in Galactic globular clusters, emphasizing the differences between these two types of stellar environments. [source]


A model for polarised radio emission from Sgr A*

ASTRONOMISCHE NACHRICHTEN, Issue S1 2003
T. Beckert
Abstract The detection of circular polarisation in compact synchrotron sources provides new insights into magnetic field configurations and the low-energy population of electrons in relativistic jets. Conversion of linear to circular polarisation can be driven by Faraday rotation or turbulence in the source itself. A detailed model for the properties of Sgr A* in the galactic centre is presented. [source]