GST Activity (gst + activity)

Distribution by Scientific Domains


Selected Abstracts


Resveratrol modulates apoptosis and oxidation in human blood mononuclear cells

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 9 2003
G. A. Losa
Abstract Background, We examined the effect of resveratrol (RS), a nonflavonoid polyphenolic phytoalexin found in grapes and red wine, and RS coincubated with the oxidant 2-deoxy-D-ribose (dR), on apoptosis and on the oxidative metabolic status of normal human peripheral blood mononuclear cells (PBMNCs) isolated ex vivo from healthy donors. Material and methods, Apoptosis was measured by changes of membrane permeability to propidium iodide (PI), plasma membrane exposure of phosphatidylserine (PS) and intracellular caspase activity. Oxidative status was assessed by recording the intracellular glutathione concentration (GSH), the activities of the enzymes y -glutamyltransferase (y- GT) and glutathione-S-transferase (GST), and intracellular lipid peroxidation (MDA). Results, Neither apoptotic nor oxidative parameters were affected by culturing PBMNCs in medium containing RS up to 20 µM for 5 days, while the frequency of cells with intermediate permeability to PI (17% ± 5) increased at 50 µM of RS. Thus resveratrol was slightly toxic, but there was little apoptosis in these cells. Peripheral blood mononuclear cells were also grown first in medium plus RS for 24 h and then for 96 h in medium containing RS plus 10 mM of dR, an oxidant sugar that is apoptogenic for human lymphocytes. The apoptotic changes triggered by dR were counteracted by the phytoalexin in a dose-dependent manner, but RS activity was absent at the lowest concentration (5 µM) and significantly reduced at the highest concentration used (50 µM). In PBMNCs coincubated with 20 µM of RS and 10 mM of dR the antioxidant effect of RS manifested with a significant reduction of caspases-3, -8, y- GT, GST activities and MDA content. Conclusions, Peripheral blood mononuclear cells acquire antioxidant capacity when treated with RS. Grape resveratrol may make a useful dietary supplement for minimizing oxidative injury in immune-perturbed states and human chronic degenerative diseases. [source]


Effects of L-arginine and L-carnitine in hypoxia/reoxygenation-induced intestinal injury

PEDIATRICS INTERNATIONAL, Issue 1 2005
Ceyda Kabaroglu
Abstract,Background:,This study was designed to show the role of oxidative stress, nitric oxide and glutathione-related antioxidant enzymes in hypoxia/reoxygenation (H/R)-induced intestinal injury model in mice and to evaluate the potential benefits of arginine and carnitine supplementation. Methods:,A total of 28 young Balb/c mice were divided into four groups: Group 1 (untreated) was given physiological saline before the experiment; group 2 H/R mice were supplemented with L-arginine; group 3 H/R mice were given L-carnitine for 7 days; and group 4 mice served as controls. At the end of day 7, H/R injury was induced and intestinal tissue malondialdehyde (MDA), nitrate levels and glutathione peroxidase (GSH-Px), glutathione reductase (GR) and glutathione-S-transferase (GST) activities were measured. Results:,MDA levels were higher in the untreated animals than in the other three groups. MDA levels were higher in the L-arginine-treated animals than in the L-carnitine-treated animals. Nitrate levels were found to be increased in the L-arginine-treated group when compared to the controls. GSH-Px and GR activities were increased in the untreated, the L-arginine and the L-carnitine-treated H/R groups when compared to the control group. GST activities were indifferent between the groups. Conclusions:,Oxidative stress contributes to the pathogenesis of H/R-induced intestinal injury. The glutathione redox cycle may have a crucial role in the H/R-induced intestinal injury. L-arginine and L-carnitine supplementations ameliorate the histological evidence of H/R-induced intestinal injury and decrease lipid peroxidation but do not alter the glutathione-related antioxidant enzyme activities. [source]


Ameliorative effects of pycnogenol® on carbon tetrachloride-induced hepatic oxidative damage in rats

PHYTOTHERAPY RESEARCH, Issue 11 2007
Tai-Hwan Ahn
Abstract This study evaluated the putative antioxidant activity of Pycnogenol® (PYC) against CCl4 -induced hepatic oxidative damage in Sprague-Dawley rats. A single oral dose of CCl4 (1.25 mL/kg) produced significantly increased levels of serum aminotransferase (AST) and alanine aminotransferase (ALT) activities. In addition, increased malondialdehyde (MDA) concentration, reduced glutathione (GSH) content, and decreased catalase, superoxide dismutase (SOD) and glutathione-S-transferase (GST) activities were observed in the hepatic tissues. However, concomitant administration with PYC (10 or 20 mg/kg) significantly improved CCl4 -induced hepatic injury, as evidenced by the decline of serum AST and ALT activities in a dose dependent manner. Moreover, PYC reduced MDA concentration and increased GSH levels and catalase, SOD and GST activities in hepatic tissues, indicating that concomitant administration with PYC efficiently prevent the CCl4 -induced oxidative damage in rats. The free radical scavenging assay showed that PYC has a dose-dependent scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals. These results indicate that PYC has an antioxidant effect against CCl4 -induced hepatic oxidative damage and is useful as a hepatoprotective agent against various liver diseases induced by oxidative stress. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Co-occurring increases of calcium and organellar reactive oxygen species determine differential activation of antioxidant and defense enzymes in Ulva compressa (Chlorophyta) exposed to copper excess

PLANT CELL & ENVIRONMENT, Issue 10 2010
ALBERTO GONZALEZ
ABSTRACT In order to analyse copper-induced calcium release and (reactive oxygen species) ROS accumulation and their role in antioxidant and defense enzymes activation, the marine alga Ulva compressa was exposed to 10 µM copper for 7 d. The level of calcium, extracellular hydrogen peroxide (eHP), intracellular hydrogen peroxide (iHP) and superoxide anions (SA) as well as the activities of ascorbate peroxidase (AP), glutathione reductase (GR), glutathione-S-transferase (GST), phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX) were determined. Calcium release showed a triphasic pattern with peaks at 2, 3 and 12 h. The second peak was coincident with increases in eHP and iHP and the third peak with the second increase of iHP. A delayed wave of SA occurred after day 3 and was not accompanied by calcium release. The accumulation of iHP and SA was mainly inhibited by organellar electron transport chains inhibitors (OETCI), whereas calcium release was inhibited by ryanodine. AP activation ceased almost completely after the use of OETCI. On the other hand, GR and GST activities were partially inhibited, whereas defense enzymes were not inhibited. In contrast, PAL and LOX were inhibited by ryanodine, whereas AP was not inhibited. Thus, copper stress induces calcium release and organellar ROS accumulation that determine the differential activation of antioxidant and defense enzymes. [source]


Mechanisms of organophosphate resistance in a field population of oriental migratory locust, Locusta migratoria manilensis (Meyen)

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 1 2009
M.L. Yang
Abstract The susceptibilities to three organophosphate (OP) insecticides (malathion, chlorpyrifos, and phoxim), responses to three metabolic synergists [triphenyl phosphate (TPP), piperonyl butoxide (PBO), and diethyl maleate (DEM)], activities of major detoxification enzymes [general esterases (ESTs), glutathione S -transferases (GSTs), and cytochrome P450 monooxygenases (P450s)], and sensitivity of the target enzyme acetylcholinesterase (AChE) were compared between a laboratory-susceptible strain (LS) and a field-resistant population (FR) of the oriental migratory locust, Locusta migratoria manilensis (Meyen). The FR was significantly resistant to malathion (57.5-fold), but marginally resistant to chlorpyrifos (5.4) and phoxim (2.9). The malathion resistance of the FR was significantly diminished by TPP (synergism ratio: 16.2) and DEM (3.3), but was unchanged by PBO. In contrast, none of these synergists significantly affected the toxicity of malathion in the LS. Biochemical studies indicated that EST and GST activities in the FR were 2.1- to 3.2-fold and 1.2- to 2.0-fold, respectively, higher than those in the LS, but there was no significant difference in P450 activity between the LS and FR. Furthermore, AChE from the FR showed 4.0-fold higher activity but was 3.2-, 2.2-, and 1.1-fold less sensitive to inhibition by malaoxon, chlorpyrifos-oxon, and phoxim, respectively, than that from the LS. All these results clearly indicated that the observed malathion resistance in the FR was conferred by multiple mechanisms, including increased detoxification by ESTs and GSTs, and increased activity and reduced sensitivity of AChE to OP inhibition. Arch. Insect Biochem. Physiol. 2009. © 2008 Wiley-Liss, Inc. [source]


Alterations of plasma antioxidants and mitochondrial DNA mutation in hair follicles of smokers

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 3 2002
Chin-San Liu
Abstract The effects of long-term smoking on mitochondrial DNA (mtDNA) deletions in hair follicles were investigated in subjects with different antioxidant capacity. Twenty-two male smokers with a smoking index of greater than 5 pack-years and without any known systemic diseases were recruited for this study. Forty healthy nonsmoking males were included as controls. We found that the concentrations of ascorbate and ,-tocopherol and the activities of glutathione S -transferase (GST) and glutathione peroxidase in blood plasma were significantly decreased in smokers. The levels of glutathione and protein thiols in whole blood and the incidence of a 4,977 bp deletion of mtDNA (dmtDNA) in hair follicles were significantly increased in smokers. A significantly higher incidence of the 4,977 bp dmtDNA was found in smokers with plasma GST activity less than 5.66 U/l (OR = 7.2, P = 0.020). Using multiple covariate ANOVA and logistic regression, we found that age and low plasma GST activity were the only two risk factors for the 4,977 bp dmtDNA. These results suggest that smoking depletes antioxidants and causes mtDNA deletions and that plasma GST may play an important role in the preservation of the mitochondrial genome in tissue cells of smokers. Environ. Mol. Mutagen. 40:168,174, 2002. © 2002 Wiley-Liss, Inc. [source]


Pulmonary responses of acute exposure to ultrafine iron particles in healthy adult rats

ENVIRONMENTAL TOXICOLOGY, Issue 4 2003
Ya-Mei Zhou
Abstract As critical constituents of ambient particulate matter, transition metals such as iron may play an important role in health outcomes associated with air pollution. The purpose of this study was to determine the respiratory effects of inhaled ultrafine iron particles in rats. Sprague Dawley rats 10,12 weeks of age were exposed by inhalation to iron particles (57 and 90 ,g/m3, respectively) or filtered air (FA) for 6 h/day for 3 days. The median diameter of particles generated was 72 nm. Exposure to iron particles at a concentration of 90 ,g/m3 resulted in a significant decrease in total antioxidant power along with a significant induction in ferritin expression, GST activity, and IL-1, levels in lungs compared with lungs of the FA control or of animals exposed to iron particles at 57 ,g/m3. NF,B,DNA binding activity was elevated 1.3-fold compared with that of control animals following exposure to 90 ,g/m3 of iron, but this change was not statistically significant. We concluded that inhalation of iron particles leads to oxidative stress associated with a proinflammatory response in a dose-dependent manner. The activation of NF,B may be involved in iron-induced respiratory responses, but further studies are merited. © 2003 Wiley Periodicals, Inc. Environ Toxicol 18: 227,235, 2003. [source]


Response of the freshwater alga Chlorella vulgaris to trichloroisocyanuric acid and ciprofloxacin,

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2008
Xiangping Nie
Abstract The effects of trichloroisocyanuric acid (TCCA) and ciprofloxacin (CPFX) on the freshwater alga Chlorella vulgaris were assessed by toxicity bioassays and by the values of biomarkers in phase I and phase II. The biomarkers included growth rate, concentration of chlorophyll a, activities of 7-ethoxyresorufin- O -dealkylases (EROD), glutathione S -transferase (GST), catalase (CAT), and total glutathione (GSH). Ciprofloxacin was a weaker growth inhibitor than TCCA but, at a concentration of greater than 12.5 mg/L, decreased the growth of C. vulgaris. Concentration of chlorophyll a showed a similar trend. The 96-h median effective concentration (EC50; i.e., 50% reduction in growth relative to the control) of CPFX was 20.6 mg/L. Trichloroisocyanuric acid was a strong growth inhibitor and, at concentrations of greater than 0.80 mg/L, caused 100% inhibition on 24-h exposure. The 96-h EC50 of TCCA was 0.313 mg/L. Ciprofloxacin and TCCA affected the phase I and phase II enzyme activities differently. On exposure to CPFX, both EROD and GSH decreased at low CPFX concentrations (<5.0 mg/L) and increased at high CPFX concentrations (>12.5 mg/L), and CAT and GST exhibited induction at low concentrations and inhibition at high concentrations. In TCCA exposure, GST activity was significantly stimulated, and GSH concentration was increased. Catalase activity increased only at TCCA concentrations of greater than 0.12 mg/L, and no change in EROD activity was observed. [source]


Cloning, expression and partial characterization of a Haemaphysalis longicornis and a Rhipicephalus appendiculatus glutathione S -transferase

INSECT MOLECULAR BIOLOGY, Issue 3 2004
I. Da Silva Vaz Jnr
Abstract The ticks Haemaphysalis longicornis and Rhipicephalus appendiculatus are important parasites worldwide. The current method for control of cattle ticks involves the use of chemicals. Nevertheless, parasite resistance is an ever increasing global problem. Glutathione S -transferases (GSTs) play a central role in detoxication of xenobiotic and endogenous compounds. Several authors have noted that an increase in GST activity is associated with resistance to insecticides and acaricides. In the present study, we report the cloning and expression of GST cDNAs from H. longicornis and R. appendiculatus. In addition, we determine the effect of three acaricides (ethion, deltamethrin and diazinon) on the enzymatic activity of rGSTs. [source]


Studies on some enzymes involved in insecticide resistance in fenitrothion-resistant and -susceptible strains of Musca domestica L. (Dipt, Muscidae)

JOURNAL OF APPLIED ENTOMOLOGY, Issue 9 2002
S. Ahmed
Co-administration of fenitrothion with three synergists, namely piperonyl butoxide (PBO), tributylphosphorotrithioate (DEF) and diethyl maleate (DEM) was investigated, respectively, at 1 : 5, 1 : 5 and 1 : 10 ratio. This co-administration of fenitrothion with PBO, DEF and DEM caused a decrease in the doses which produced 50% lethality (LD50s) in 571ab but had no synergistic effect on fenitrothion toxicity was observed in the Cooper strain. The effect of topical application of fenitrothion alone and in combination with PBO, DEF and DEM at the LD50 level on some enzyme activities in 571ab and Cooper strains was examined. The application of fenitrothion alone and in combination with DEF and DEM at LD50 level caused a significant decrease in activities of total esterases, acetylcholinesterase (AChE) and glutathione S-transferase (GST) in the 571ab strain. The decrease in GST activity was not significant in treated flies of the Cooper strain when compared with GST activity of control flies. A non-significant effect on total cytochrome P450 level was observed with fenitrothion alone and the fenitrothion + PBO treatment. No increase in activity level of total esterases, AChE and GST was found, which might suggest that changes in activity level of these enzymes are not related to fenitrothion resistance in the 571ab strain. [source]


In vitro evaluation of the chemoprotective action mechanisms of leontopodic acid against aflatoxin B1 and deoxynivalenol-induced cell damage

JOURNAL OF APPLIED TOXICOLOGY, Issue 1 2009
Stefano Costa
Abstract Several in vitro studies showed that free radical scavengers possess chemopreventive properties against mycotoxin-induced cell damage which are at least partially associated with the induction of phase II detoxifying enzymes and antioxidant enzymes like glutathione S -transferase (GST) and glutathione peroxidase (GPx). The aim of this project was to study the chemopreventive effects of leontopodic acid (LA), a potent natural occurring free radical scavenger isolated from the aerial parts of Leontopodium alpinum. Different mycotoxins were evaluated in two different cell lines on the basis of their specific toxicity: aflatoxin B1 (AFB1) on HepG2 cells and deoxynivalenol (DON) on U937 cells. Cell viability and reactive oxygen species concentration were determined, and the effects of pre-treatment with LA on these parameters were investigated together with the GST and GPx activity as well as the concentration of reduced glutathione. The results show that LA protects U937 cells from DON-induced cell damage but not HepG2 cells from AFB1. Moreover LA is able to enhance GPx activity in U937, but not GST activity in HepG2. We hypothesize that the increase in detoxifying enzymes is probably the main mechanism of antioxidant mediated chemoprevention. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Effects of benzo[a]pyrene on tissue activities of metabolizing enzymes and antioxidant system in normal and protein-malnourished rats

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 2 2003
Osama A. Badary
Abstract The effects of benzo[a]pyrene (B[a]P) on some drug-metabolizing and antioxidant systems in liver, lung, and stomach were investigated in normal and protein malnutrition (PM) rats. PM significantly inhibited tissue glutathione (GSH) content and increased hepatic lipid peroxidation. Cytochrome P450 isoform CYP1A1 was significantly increased in various tissues (42,73%). Also, lung glutathione S-transferase (GST) activity was significantly decreased (19%) in PM rats. On the other hand, B[a]P significantly induced tissue GSH of control and PM rats. Also, hepatic lipid peroxidation were significantly increased in control rats treated with B[a]P. Superoxide dismutase (SOD) activity was decreased by B[a]P treatment in PM rat stomach. B[a]P significantly induced both quinone reductase (QR) (in all tissues) and hepatic GST of control and PM rats. GST activity in PM rat liver was significantly higher than that of control rat liver after B[a]P treatment. Also, B[a]P induced hepatic CYP1A1 by 32-fold and 27-fold (P , 0.05) in control and PM rats, respectively. Stomach and hepatic UDP-glucuronosyltransferase activities were significantly decreased (34%) and increased (74%), respectively by B[a]P in PM rats. The results suggest that PM status has a modifying effect on the response of some antioxidant and metabolizing systems to a well-known carcinogen risk. © 2003 Wiley Periodicals, Inc. J Biochem Mol Toxicol 17:86,91, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.10064 [source]


Synergistic effects of nicotine on arecoline-induced cytotoxicity in human buccal mucosal fibroblasts

JOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 8 2001
Yu-Chao Chang
Abstract: Areca quid chewing has been linked to oral submucous fibrosis and oral cancer. Arecoline, a major areca nut alkaloid, is considered to be the most important etiologic factor in the areca nut. In order to elucidate the pathobiological effects of arecoline, cytotoxicity assays, cellular glutathione S-transferase (GST) activity and lipid peroxidation assay were employed to investigate cultured human buccal mucosal fibroblasts. To date, there is a large proportion of areca quid chewers who are also smokers. Furthermore, nicotine, the major product of cigarette smoking, was added to test how it modulated the cytotoxicity of arecoline. At a concentration higher than 50 ,g/ml, arecoline was shown to be cytotoxic to human buccal fibroblasts in a dose-dependent manner by the alamar blue dye colorimetric assay (P<0.05). In addition, arecoline significantly decreased GST activity in a dose-dependent manner (P<0.05). At concentrations of 100 ,g/ml and 400 ,g/ml, arecoline reduced GST activity about 21% and 46%, respectively, during a 24 h incubation period. However, arecoline at any test dose did not increase lipid peroxidation in the present human buccal fibroblast test system. The addition of extracellular nicotine acted synergistically on the arecoline-induced cytotoxicity. Arecoline at a concentration of 50 ,g/ml caused about 30% of cell death over the 24 h incubation period. However, 2.5 mM nicotine enhanced the cytotoxic response and caused about 50% of cell death on 50 ,g/ml arecoline-induced cytotoxicity. Taken together, arecoline may render human buccal mucosal fibroblasts more vulnerable to other reactive agents in cigarettes via GST reduction. The compounds of tobacco products may act synergistically in the pathogenesis of oral mucosal lesions in areca quid chewers. The data presented here may partly explain why patients who combined the habits of areca quid chewing and cigarette smoking are at greater risk of contracting oral cancer. [source]


In-vitro effect of flavonoids from Solidago canadensis extract on glutathione S-transferase

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 2 2006
Pál Apáti
Solidago canadensis is typical of a flavonoid-rich herb and the effect of an aqueous ethanol extract on glutathione-S-transferase (GST) activity using HepG2 cells was compared with those of the flavonol quercetin and its glycosides quercitrin and rutin, found as major constituents. The composition of the extract was determined by HPLC and rutin was found to be the major flavonoidal component of the extract. Total GST activity was assessed using 1-chloro-2,4-dinitrobenzene as a substrate. The glycosides rutin and quercitrin gave dose-dependent increases in GST activity, with a 50% and 24.5% increase at 250 mm, respectively, while the aglycone quercetin inhibited the enzyme by 30% at 250 mm. The total extract of the herb gave an overall dose-dependent increase, the fractions corresponding to the flavonoids showed activating effects while those containing caffeic acid derivatives were inhibitory. The activity observed corresponds to that reported for similar compounds in-vivo using rats, thus the HepG2 cell line could serve as a more satisfactory method of assessing the effects of extracts and compounds on GST. [source]


,-Glucuronidase inhibitor tectorigenin isolated from the flower of Pueraria thunbergiana protects carbon tetrachloride-induced liver injury

LIVER INTERNATIONAL, Issue 4 2003
Hae-Woong Lee
Abstract Background/Aim: To understand the relationship between the fluctuation in serum ,-glucuronidase and hepatotoxicity, an inhibitor of ,-glucuronidase was isolated from the flowers of Pueraria thunbergiana and its hepatoprotective activity was measured. Method: Tectorigenin was isolated from the flowers of pueria thunbergiana as an inhibitor of ,-glucuronidase, and serum ALT, AST and biological parameters as markers for its hepatoprotective activity were measured on CCl4 -induced liver injury in mice. The relationship between serum ,-glucuronidase and hepatoprotective activities in mice was measured. Results: When tectorigenin at a dose of 100 mg/kg was intraperitoneally administered on CCl4 -induced liver injury in mice, it significantly inhibited the increase of plasma ALT, AST and LDH activities. The inhibitory effect of tectorigenin is much more potent than that of dimethyl diphenyl bicarboxylate (DDB), which has been used as a commercial hepatoprotective agent. When tectoridin transformed to tectorigenin by intestinal bacteria was orally administered to mice, it showed hepatoprotective activity. However, when tectoridin was intraperitoneally administrated to mice, it did not exhibit hepatoprotective activity. Moreover, orally administered tectoridin not only inhibited ,-glucuronidase but also increased GSH content and GST activity on CCl4 -induced hepatotoxicity of mice. Conclusion: We insist that an inhibitor of ,-glucuronidase tectorigenin may be hepatoprotective and tectoridin should be a prodrug transformed to tectorigenin. [source]


Effect of sulforaphane on glutathione-adduct formation and on glutathione_S_transferase-dependent detoxification of acrylamide in Caco-2 cells

MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 12 2009
Rita Pernice
Abstract The toxicity of dietary acrylamide (AA) depends on its biotransformation pathways, in which phase I cytochrome P-450 enzymes transform AA into glycidamide. The phase II enzyme glutathione_S_transferase (GST) catalyses the conjugation of AA with glutathione (GSH). GST induction by phytochemicals like sulforaphane (SFN) plays a role in chemoprevention. Here, the effect of SFN on the detoxification of AA through GSH conjugation was studied in Caco-2 cells. GSH adducts with AA and SFN were synthesized, identified by NMR and quantified by LC-MS/MS. Caco-2 cells were treated with either 2.5,mM AA, 10,,M SFN or the combination of both for 24,h. Concentrations of GSH conjugates (GSH-AA, GSH-SFN, SFN-GSH-AA), AA and SFN were analysed by LC-MS/MS. GSH contents and GST activity were determined photometrically. GST activity was increased after treatment of the cells with SFN (38±6%, p,0.05) or AA (25±4%, p,0.05). GSH concentrations decreased after all treatments. Quantitative data of GSH adduct formation showed that the reaction between GSH and SFN is favoured over that between GSH and AA. The data suggest that SFN might impair the GSH-dependent detoxification of AA by SFN-GSH adduct formation and, thus, lower the GSH concentrations available for its reaction with AA. [source]


Intervention with polyphenol-rich fruit juices results in an elevation of glutathione S -transferase P1 (hGSTP1) protein expression in human leucocytes of healthy volunteers

MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 12 2006
Thomas Hofmann
Abstract Polyphenols are probably antigenotoxic on account of their antioxidant activities and might alter phase I and II enzymes in a way that results in chemoprotection. We investigated the hypothesis that polyphenols enhance expression of glutathione S -transferases (GSTs), which increases carcinogen detoxification and thereby provides protection against oxidative stress. HGSTP1 protein expression and GST polymorphisms were determined in leucocytes obtained during an intervention study with healthy subjects consuming two fruit juices in an 8 wk trial (polyphenol-free run in phase, juice intervention phase, washout phase, second juice intervention phase, each treatment regime lasted for 2 wk). The study had originally shown that juice intervention significantly reduced oxidative DNA damage in leucocytes at week 8 (Bub, A., Watzl, B., Blockhaus, M., Briviba, K. et al., J. Nutr. Biochem. 2003, 14, 90,98). We reanalysed the levels of DNA damage based on GST genotypes. We also treated leucocytes in vitro with mixtures of polyphenols and determined cytotoxicity and expression of 96 genes related to drug metabolism. Key results with leucocytes of the intervention study were that the initial content of hGSTP1 protein was first suppressed at weeks 4 and 6. At week 8, however, hGSTP1 protein expression was significantly increased. HGSTP1 protein levels and DNA damage were inversely correlated (p = 0.005), but there was no difference for cells obtained from subjects with hGSTM1*1 and hGSTM1*0 genotypes, nor was there any difference between cells from subjects consuming the two different juices. The treatment of leucocytes with polyphenol mixtures in vitro did not result in modulated GST gene expression or total GST activity, but in an up-regulation of other biotransformation enzymes (e. g., members of the cytochrom P450 and the sulphotransferase family). In conclusion, in vitro treatment of leucocytes led to a modulated mRNA expression of selected genes, not directly related to oxidative defence systems. In vivo, however, we observed a delayed enhancement of hGSTP1, which could be associated with an initial repression of oxidative DNA damage in leucocytes from human subjects, consuming juices with high levels of polyphenols. [source]


Developmental changes in glutathione S -transferase activity in herbicide-resistant populations of Alopecurus myosuroides Huds (black-grass) in the field

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 12 2001
Lucy J Milner
Abstract Herbicide-resistant populations of Alopecurus myosuroides Huds (black-grass) have become widespread throughout the UK since the early 1980s. Clear evidence suggests that more than one resistance mechanism exists, and glutathione S -transferases (GSTs) have been implicated in resistance due to enhanced metabolism. This study reports the determination of GST activity in four UK black-grass populations from field sites situated in the East Midlands. Data demonstrate that, as untreated plants in the field mature, there is an accompanying natural elevation of GST activity with natural environmental changes from winter to spring. We speculate that this endogenous change in enzyme activity with plant development in the field contributes to reduced efficacy of some graminicides applied in the spring. These observations are discussed in relation to predicting herbicide efficacy to achieve maximum control of this important grass weed. © 2001 Society of Chemical Industry [source]


The role of glutathione S -transferases in the detoxification of some organophosphorus insecticides in larvae and pupae of the yellow mealworm, Tenebrio molitor (Coleoptera: Tenebrionidae)

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 6 2001
Iason Kostaropoulos
Abstract The correlation between the natural levels of glutathione S -transferase (GST) and the tolerance to the organophosphorus insecticides parathion-methyl and paraoxon-methyl, as well as the interaction of affinity-purified enzyme and the insecticides were investigated in order to collect further information on the role of the glutathione S -transferase system as a mechanism of defence against insecticides in insects. The studies were carried out on the larvae and pupae of the coleopteran Tenebrio molitor L, which exhibit varying natural levels of GST activity. Stage-dependent susceptibility of the insect against insecticides was observed during the first 24,h. However, 48,h after treatment, the KD50 value increased significantly due to the recovery of some individuals. Simultaneous injection of insecticide with compounds which inhibit GST activity in vitro caused an alteration in susceptibility of insects 24 or 48,h post-treatment, depending on stage and insecticide used. Inhibition studies combined with competitive fluorescence spectroscopy revealed that the insecticides probably bind to the active site of the enzyme, thus inhibiting its activity towards 1-chloro-2,4-dinitrobenzene in a competitive manner. High-performance liquid chromatography and gas chromatography revealed that T molitor GST catalyses the conjugation of the insecticides studied to a reduced form of glutathione (GSH). From the above experimental results, it is considered that GST offers a protection against the organophosphorus insecticides studied by active site binding and subsequent conjugation with GSH. © 2001 Society of Chemical Industry [source]


Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 3 2005
Frédéric Francis
Abstract Glutathione S-transferases (GST) in insects play an important role in the detoxification of many substances including allelochemicals from plants. Induction of GST activity in Myzus persicae in response to secondary metabolites from Brassica plants was determined using different host plant species and confirmed using artificial diet with pure allelochemicals added. The 2,4-dinitro-1-iodobenzene (DNIB) was found to be a useful substrate for identifying particular GSTs in insects. GSTs from M. persicae were purified using different affinity chromatography columns and related kinetic parameters were calculated. GST isoenzymes were characterised using electrophoretic methods. Although SDS-PAGE results indicated similarity among the purified enzymes from each affinity column, biochemical studies indicated significant differences in kinetic parameters. Finally, the GST pattern of M. persicae was discussed in terms of insect adaptation to the presence of plant secondary substances such as the glucosinolates and the isothiocyanates, from Brassicaceae host plants. Arch. Insect Biochem. Physiol. 58:166,174, 2005. © 2005 Wiley-Liss, Inc. [source]


Crystallization of agGST1-6, a recombinant glutathione S -transferase from a DDT-resistant strain of Anopheles gambiae

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 1 2001
Pamela H. Roberts
Glutathione S -transferases (GSTs) belong to a family of detoxification enzymes that conjugate glutathione to various xenobiotics, thus facilitating their expulsion from the cell. GST activity is elevated in many insecticide-resistant insects, including the DDT-resistant malaria vector Anopheles gambiae. Crystals of the recombinant form of a GST from A. gambiae, agGST1-6, have been grown in at least five different crystal forms, with a broad range of diffraction resolution limits. A complete 2.0,Ĺ data set has been collected on a C -centered orthorhombic crystal form with unit-cell parameters a = 99.0, b = 199.4, c = 89.6,Ĺ. A search for heavy-atom derivatives has been initiated, along with phase-determination efforts by molecular replacement. [source]


The effect of bacterial glutathione S-transferase on morpholine degradation

BIOTECHNOLOGY JOURNAL, Issue 2 2009
Giti Emtiazi Professor
Abstract Glutathione S-transferases (GSTs) constitute a large family of enzymes that catalyze the addition of glutathione to endogenous, or xenobiotic, often toxic electrophilic compounds. The effect of this enzyme in facilitating polychlorinated biphenyls degradation has been studied previously. Here the effects of induced cell-free extracts of Acinetobacter calcoaceticus and Pseudomonas aeruginosa (grown on hexadecane), and E. coli BL21 (induced with pGEX-2T plasmid on isothiopropylgalactoside) were recruited to facilitate morpholine degradation by Mycobacterium and were compared with non-induced strains. The results showed that all induced strains had significantly more GST activity compared to non-induced ones, and the strain with most GST activity, A. calcoaceticus BS, removed morpholine faster. Eukaryotic GST gene expressed in E. coli BL21 also could facilitate morpholine degradation by Mycobacterium, The same experiments performed with cell-free extracts of non-induced cells did not show any significant effects on morpholine removal. These results showed that there is a correlation between GST activity and acceleration of morpholine degradation. [source]


Eradication of Helicobacter pylori Restores Glutathione S-Transferase Activity and Glutathione Levels in Antral Mucosa

CANCER SCIENCE, Issue 12 2001
Arnoud H. A. M. van Oijen
Glutathione S-transferases (GST) and glutathione peroxidases (GPO) are important in detoxification. GST activity in the mucosa of the gastrointestinal tract is inversely correlated with the development of gastrointestinal cancer. Helicobacter pylori (H. pylori) infection has been associated with gastric cancer. We studied GST activity and the substrate glutathione (GSH) in patients with H. pylori-associated gastritis. GST activity and isoenzyme levels, GPO activity and GSH levels were studied in antral biopsies of 38 H./pyfori-positive patients, before and after eradication treatment. In 31 patients in whom H. pylori was successfully eradicated, antral GST enzyme activity before therapy was 532 (465,598) nmol/mg protein-min (mean and 95% confidence interval) and that after therapy was 759 (682,836) nmol/mg protein-min (P<0.0001). Correspondingly, levels of GST , and GST-P1 were higher after eradication (P<0.001). GSH concentration significantly increased: 21.2 (16.2,26.2) nmol/mg protein before and 27.1 (23.6,30.6) nmol/mg protein after therapy (P<0.05). In 7 patients in whom H. pylori was not eradicated, GST activity was 671 (520,823) nmol/mg protein min and 599 (348,850) nmol/mg protein before and after treatment respectively (P=0.32). GSH levels were 17.4 (9.0,25.7) nmol/mg protein and 18.2 (9.1,27.3) nmol/mg protein, respectively (P=0.84). No differences in antral GPO enzyme activity, both of selenium (Se)-dependent and total GPO, before and after successful treatment were found. Eradication of H. pylori infection increases GST activity and GSH levels in antral mucosa. Low GST activity and GSH concentration due to H. pylori infection might play a role in gastric carcinogenesis. [source]