GH Secretion (gh + secretion)

Distribution by Scientific Domains


Selected Abstracts


Chronic cognitive sequelae after traumatic brain injury are not related to growth hormone deficiency in adults

EUROPEAN JOURNAL OF NEUROLOGY, Issue 5 2010
D. Pavlovic
Objective:, The objective of the study was to asses the possible influence of hypothalamo,pituitary deficiencies, and growth hormone (GH) deficiency in particular, on cognition in adult patients with traumatic brain injury (TBI). TBI is a recently identified risk factor for cognitive deficits and hypopituitarism. Even the patients with favorable outcome after TBI may present with persistent bodily, psychosocial, and cognitive impairments, resembling patients with untreated partial or complete pituitary insufficiency. Design:, We performed retrospective and cross-sectional study of endocrine and cognitive function in TBI in 61 patients (aged 37.7 ± 1.7 years) of both sexes (44 m,17 f), at least 1 year after TBI (3.9 ± 0.6 years). Serum insulin-like growth factor 1 (IGF-I), thyroxin, thyroid-stimulating hormone (TSH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (in men), prolactin, and cortisol were measured, and GH secretion was assessed by growth hormone releasing hormone (GHRH) + growth hormone releasing peptide-6 (GHRP-6) test. Cognitive function was assessed by using a standard neuropsychological battery. Results:, GH deficiency (GHD) and GH insufficiency (GHI) were found in 20 patients (32.8%). After adjustment for confounders [age, body mass index (BMI), education level, time elapsed from TBI], there were no significant differences in results of neuropsychological tests between patients with TBI with GHD, GHI, and normal GH secretion. There were no correlations of neuropsychological variables with stimulated peak GH secretion or IGF-I level. Conclusions:, GHD persists long after the TBI, independently of trauma severity and age at traumatic event. GH secretion is more sensitive to TBI than other pituitary hormones. No evidence is found for an association of cognitive function impairment and somatotropic axis impairment in adult patients tested more than 1 year after the TBI. [source]


Role of insulin, insulin-like growth factor-1, hyperglycaemic food and milk consumption in the pathogenesis of acne vulgaris

EXPERIMENTAL DERMATOLOGY, Issue 10 2009
Bodo C. Melnik
Abstract:, It is the purpose of this viewpoint article to delineate the regulatory network of growth hormone (GH), insulin, and insulin-like growth factor-1 (IGF-1) signalling during puberty, associated hormonal changes in adrenal and gonadal androgen metabolism, and the impact of dietary factors and smoking involved in the pathogenesis of acne. The key regulator IGF-1 rises during puberty by the action of increased GH secretion and correlates well with the clinical course of acne. In acne patients, associations between serum levels of IGF-1, dehydroepiandrosterone sulphate, dihydrotestosterone, acne lesion counts and facial sebum secretion rate have been reported. IGF-1 stimulates 5,-reductase, adrenal and gonadal androgen synthesis, androgen receptor signal transduction, sebocyte proliferation and lipogenesis. Milk consumption results in a significant increase in insulin and IGF-1 serum levels comparable with high glycaemic food. Insulin induces hepatic IGF-1 secretion, and both hormones amplify the stimulatory effect of GH on sebocytes and augment mitogenic downstream signalling pathways of insulin receptors, IGF-1 receptor and fibroblast growth factor receptor-2b. Acne is proposed to be an IGF-1-mediated disease, modified by diets and smoking increasing insulin/IGF1-signalling. Metformin treatment, and diets low in milk protein content and glycaemic index reduce increased IGF-1 signalling. Persistent acne in adulthood with high IGF-1 levels may be considered as an indicator for increased risk of cancer, which may require appropriate dietary intervention as well as treatment with insulin-sensitizing agents. [source]


The effect of caloric restriction interventions on growth hormone secretion in nonobese men and women

AGING CELL, Issue 1 2010
Leanne M. Redman
Summary Lifespan in rodents is prolonged by caloric restriction (CR) and by mutations affecting the somatotropic axis. It is not known if CR can alter the age-associated decline in growth hormone (GH), insulin-like growth factor (IGF)-1 and GH secretion. To evaluate the effect of CR on GH secretory dynamics; forty-three young (36.8 ± 1.0 years), overweight (BMI 27.8 ± 0.7) men (n = 20) and women (n = 23) were randomized into four groups; control = 100% of energy requirements; CR = 25% caloric restriction; CR + EX = 12.5% CR + 12.5% increase in energy expenditure by structured exercise; LCD = low calorie diet until 15% weight reduction followed by weight maintenance. At baseline and after 6 months, body composition (DXA), abdominal visceral fat (CT) 11 h GH secretion (blood sampling every 10 min for 11 h; 21:00,08:00 hours) and deconvolution analysis were measured. After 6 months, weight (control: ,1 ± 1%, CR: ,10 ± 1%, CR + EX: ,10 ± 1%, LCD: ,14 ± 1%), fat mass (control: ,2 ± 3%, CR: ,24 ± 3%, CR + EX: ,25 ± 3%, LCD: ,31 ± 2%) and visceral fat (control: ,2 ± 4%, CR: ,28 ± 4%, CR + EX: ,27 ± 3%, LCD: ,36 ± 2%) were significantly (P < 0.001) reduced in the three intervention groups compared to control. Mean 11 h GH concentrations were not changed in CR or control but increased in CR + EX (P < 0.0001) and LCD (P < 0.0001) because of increased secretory burst mass (CR + EX: 34 ± 13%, LCD: 27 ± 22%, P < 0.05) and amplitude (CR + EX: 34 ± 14%, LCD: 30 ± 20%, P < 0.05) but not to changes in secretory burst frequency or GH half-life. Fasting ghrelin was significantly increased from baseline in all three intervention groups; however, total IGF-1 concentrations were increased only in CR + EX (10 ± 7%, P < 0.05) and LCD (19 ± 4%, P < 0.001). A 25% CR diet for 6 months does not change GH, GH secretion or IGF-1 in nonobese men and women. [source]


The Ghrelin/Obestatin Balance in the Physiological and Pathological Control of Growth Hormone Secretion, Body Composition and Food Intake

JOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2010
R. Hassouna
Ghrelin and obestatin are two gastrointestinal peptides obtained by post-translational processing of a common precursor, preproghrelin. Ghrelin is an orexigenic and adipogenic peptide and a potent growth hormone secretagogue (GHS) modified by the enzyme ghrelin- O -acyl-transferase to bind and activate its receptor, the GHS-R. The ghrelin/GHS-R pathway is complex and the effects of ghrelin on GH secretion, adiposity and food intake appear to be relayed by distinct mechanisms involving different transduction signals and constitutive activity for the GH-R, different cofactors as modulators of endogenous ghrelin signalling and/or alternative ghrelin receptors. The discovery of obestatin in 2005 brought an additional level of complexity to this fascinating system. Obestatin was initially identified as an anorexigenic peptide and as the cognate ligand for GPR39, but its effect on food intake and its ability to activate GPR39 are still controversial. Although several teams failed to reproduce the anorexigenic actions of obestatin, this peptide has been shown to antagonise GH secretion and food intake induced by ghrelin and could be an interesting pharmacological tool to counteract the actions of ghrelin. Ghrelin and obestatin immunoreactivities are recovered in the blood with an ultradian pulsatility and their concentrations in plasma vary with the nutritional status of the body. It is still a matter of debate whether both hormones are regulated by independent mechanisms and whether obestatin is a physiologically relevant peptide. Nevertheless, a significant number of studies show that the ghrelin/obestatin ratio is modified in anorexia nervosa and obesity. This suggests that the ghrelin/obestatin balance could be essential to adapt the body's response to nutritional challenges. Although measuring ghrelin and obestatin in plasma is challenging because many forms of the peptides circulate, more sensitive and selective assays to detect the different preproghrelin-derived peptides are being developed and may be the key to obtaining a better understanding of their roles in different physiological and pathological conditions. [source]


Noradrenergic Regulation of Hypothalamic Cells that Produce Growth Hormone-Releasing Hormone and Somatostatin and the Effect of Altered Adiposity in Sheep

JOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2005
J. Iqbal
Abstract The growth hormone (GH) axis is sensitive to alteration in body weight and there is evidence that central noradrenergic systems regulate neurones that produce growth hormone-releasing hormone (GHRH) and somatostatin (SRIF). This study reports semiquantitative estimates of the noradrenergic input to neuroendocrine GHRH and SRIF neurones in the sheep of different body weights. We also studied the effects of altered body weight on expression of dopamine ,-hydroxylase (DBH), the enzyme that produces noradrenalin from dopamine. Ovariectomised ewes were made Lean (39.6 ± 2.6 kg; Mean ± SEM) by dietary restriction, whereas Normally Fed animals (61.2 ± 0.8 kg) were maintained on a regular diet. Brains were perfused for immunohistochemistry and in situ hybridisation. The Mean ± SEM number of GHRH-immunoreactive (-IR) cells was lower in Normally Fed (65 ± 7) than in Lean (115 ± 14) animals, whereas the number of SRIF-IR cells was similar in the two groups (Normally Fed, 196 ± 17; Lean 230 ± 21). Confocal microscopic analysis revealed that the percentage of GHRH-IR cells (Normally Fed 36 ± 1.5% versus Lean 32 ± 4.6%) and percentage of SRIF-IR cells (Normally Fed 30 ± 40.4% versus Lean 32 ± 2.3%) contacted by noradrenergic fibres did not change with body weight. FluoroGold retrograde tracer injections confirmed that noradrenergic projections to the arcuate nucleus are from ventrolateral medulla and noradrenergic projections to periventricular nucleus arise from the ventrolateral medulla, nucleus of solitary tract, locus coeruleus (LC) and the parabrachial nucleus (PBN). DBH expressing cells were identified using immunohistochemistry and in situ hybridisation and the level of expression (silver grains/cell) quantified by image analysis. The number of DBH cells was similar in Normally Fed and Lean animals, but the level of expression/cell was lower (P < 0.02) in the PBN and LC of Lean animals. These results provide an anatomical basis for the noradrenergic regulation of GHRH and SRIF cells and GH secretion. Altered activity or noradrenergic neurones in the PBN and LC that occur with reduced body weight may be relevant to the control of GH axis. [source]


The Inhibition of Inducible Nitric Oxide Synthase Reverts Arthritic-Induced Decrease in Pituitary Growth Hormone mRNA But Not in Liver Insulin-Like Growth Factor I mRNA Expression

JOURNAL OF NEUROENDOCRINOLOGY, Issue 12 2003
I. Ibáñez De Cáceres
Abstract Experimental arthritis induced by Freund-adjuvant administration is a model of chronic inflammation and rheumatoid arthritis associated with a decrease in pituitary growth hormone (GH) and hepatic insulin-like growth factor I (IGF-I) gene expression. Excessive nitric oxide (NO) synthesis by inducible NO synthase (iNOS) has been implicated in the pathogenesis of inflammatory illness. Moreover, NO participates in the regulation of GH secretion at both the hypothalamus and the pituitary. We have examined the role of iNOS activation in producing the changes in the GH-IGF-I axis in arthritic rats. Adult male Wistar rats received aminoguanidine or vehicle from day 20, after adjuvant or vehicle injection, until day 28. Two hours and 30 min after the last aminoguanidine injection, all rats were killed by decapitation. Arthritis increased hypothalamic expression of somatostatin mRNA while it decreased pituitary GH mRNA expression, and both effects were prevented by aminoguanidine administration. In arthritic rats, the parallel decrease in serum IGF-I, and in hepatic IGF-I content and mRNA expression, correlates with the decrease in circulating GH concentrations. Aminoguanidine administration to arthritic rats did not modify either serum GH or serum IGF-I concentrations, or hepatic IGF-I mRNA expression. However, aminoguanidine administration to control rats resulted in a decrease in serum GH concentrations and in a decrease in both hepatic IGF-I mRNA expression and serum IGF-I concentrations. These data suggest that NO mediates the arthritis-induced decrease in GH mRNA expression by acting at a hypothalamic level, but it is not involved in the decrease in hepatic IGF-I mRNA expression. [source]


Targeted Cytotoxic Analogue of Luteinizing Hormone-Releasing Hormone (LH-RH) Only Transiently Decreases the Gene Expression of Pituitary Receptors for LH-RH

JOURNAL OF NEUROENDOCRINOLOGY, Issue 1 2002
M. Kovacs
Abstract A cytotoxic analogue of LH-RH, AN-207, consisting of 2-pyrrolinodoxorubicin (AN-201) linked to carrier [D-Lys6]LH-RH, was developed for targeted therapy of cancers expressing LH-RH-receptors. To determine its possible side-effects on the pituitary gland, we investigated the gene expression of pituitary LH-RH-receptors and LH secretion in ovariectomized female and normal male rats after treatment with the maximum tolerated dose of AN-207. The effect of AN-207 on the gene expression of the pituitary GH-RH-receptors and GH secretion was also assessed in male rats. Five hours after a single i.v. injection of AN-207 at 175 nmol/kg, there was a 39,51% decrease in mRNA expression for the pituitary LH-RH-receptors in male and female rats. The carrier, at an equimolar dose, caused a similar reduction (37,39%), whereas the cytotoxic radical AN-201, at an equitoxic dose (110 nmol/kg), produced only a 12,24% decrease (NS) in the mRNA expression of LH-RH-receptors. AN-207 and the carrier analogue induced a comparable 90,100-fold increase in serum LH concentrations in male rats, and the same 12-fold elevation in OVX rats at 5 h. Seven days after treatment with AN-207, the mRNA levels for the LH-RH receptors and the serum LH concentration were back to normal in both sexes. AN-207, the carrier, and AN-201 had no significant effect on the expression of mRNA for GH-RH-receptors in the pituitary. In vitro, a continuous perfusion of pituitary cells with 10 nM AN-207 did not affect the hormone-releasing function of the targeted LH cells or the nontargeted GH cells. Our results demonstrate that cytotoxic LH-RH analogue AN-207, at the maximum tolerated dose causes only a transient decrease in the gene expression of the pituitary LH-RH receptors, and the levels of mRNA for LH-RH receptor fully recover within 7 days. Moreover, the carrier hormone moiety, and not the cytotoxic radical in AN-207 is responsible for this transient suppression. Our findings suggest that the therapy with cytotoxic LH-RH analogues will not inflict permanent damage to pituitary function. [source]


Masculinizing Effect of Dihydrotestosterone on Growth Hormone Secretion is Inhibited in Ovariectomized Rats with Anterolateral Deafferentation of the Medial Basal Hypothalamus or in Intact Female Rats

JOURNAL OF NEUROENDOCRINOLOGY, Issue 4 2000
Tamura
There is a striking sex difference in the pattern of growth hormone (GH) secretion in rats. Our previous studies showed that short-term administration of pharmacological doses of testosterone or dihydrotestosterone (DHT) masculinized the GH secretory pattern in ovariectomized (OVX) rats. The locus where testosterone or DHT interacts with the somatotropic axis is believed to be the hypothalamus. To obtain insights into this phenomenon, we administered a single dose of DHT s.c. to adult OVX rats at 0.01, 0.1 or 1 mg/rat. Blood GH concentrations were measured in unanaesthetized rats. Six to12 h after the s.c. administration of all three doses of DHT, the GH secretory pattern revealed a male-like secretory pattern as shown by episodic bursts occurring at 2,3-h intervals with low or undetectable trough levels. When anterolateral deafferentation of the medial basal hypothalamus (ALC) was performed, the blood concentrations revealed irregularly occurring small fluctuations, instead of the usual high bursts, but the basal GH concentration was significantly higher than that of OVX-sham-operated rats. DHT treatment did not elicit pulsatile GH secretion or alter GH concentrations in OVX rats with ALC. When intact adult female rats received DHT at a dose of 1 mg/rat, the male-like GH secretory pattern was not induced. These results suggest that neural inputs from the anterolateral direction to the medial basal hypothalamus are necessary for the masculinizing effect of DHT on the GH secretory pattern in OVX rats, and that oestrogen in intact female rats prevents the masculinizing effect of DHT. [source]


Increased melatonin concentrations in children with growth hormone deficiency

JOURNAL OF PINEAL RESEARCH, Issue 2 2007
Michal Karasek
Abstract:, A relationship between melatonin and growth hormone (GH) is poorly understood. We compare circadian melatonin rhythms in short children with normal and decreased GH secretion. The analysis included 22 children (20 boys and 2 girls) aged 11.1,16.9 yr (mean ± S.E.M. = 14.1 ± 0.3 yr) with short stature (height SDS below ,2.0). Based on the GH peak in stimulation tests patients were divided into two groups: idiopathic short stature (ISS, n = 11; GH peak , 10 ng/mL) and GH deficiency (GHD, n = 11; GH peak < 10 ng/mL). In all patients the circadian melatonin rhythm was assessed on the basis of nine blood samples, collected in 4-hr intervals during the daytime and 2-hr intervals at night, with dark period lasting from 22:00 to 06:00 hr. Magnetic resonance imaging examination excluded organic abnormalities in central nervous system in all patients. Melatonin concentration at 24:00, 02:00 and 04:00 hr as well as the area under curve of melatonin concentrations (AUC) were significantly higher in the patients with GHD than in individuals with ISS. Significant correlations between GH secretion and melatonin concentrations at 24:00, 02:00 and 04:00 hr, and AUC were also observed. On the basis of these data it seems that the assessment of nocturnal melatonin secretion might be a valuable diagnostic tool used for the improvement of the difficult diagnosis of short stature in children. [source]


Profound changes in the GH,IGF-I system in adolescent girls with IDDM: can IGFBP1 be used to reflect overall glucose regulation?

PEDIATRIC DIABETES, Issue 3 2000
MU Halldin
Disturbances in the relations between insulin, growth hormone (GH) and insulin-like growth factor I (IGF-I) may be a major cause behind deteriorated metabolic control in adolescent girls with type I diabetes. These patients have increased GH secretion and low IGF-I concentrations. The aim of this study was to identify possible endocrine mechanisms behind good and poor glycaemic control in such girls, focusing on the insulin,GH,IGF-I axis. Ten girls with well-controlled insulin-dependent diabetes mellitus (IDDM), hemoglobin A1c (HbA1c) 6.5±0.4% (normal range 3.9,5.2%) and nine healthy controls were investigated and compared with 11 girls with poor glucose regulation, HbA1c 10.9±0.4%, and their corresponding controls. Serum profiles of glucose, insulin, GH and IGF-binding protein 1 (IGFBP1) were analysed in addition to IGF-I and HbA1c. Two interesting observations were made. GH concentrations were equally elevated in the two diabetic groups regardless of metabolic control (mean 24 h GH , girls with poorly controlled diabetes 10.0±1.0 mU/L vs 9.8±1.7 , girls with well-controlled diabetes; p=ns). Likewise, the IGF-I concentrations were reduced to the same extent (233±19 vs 242±23 ,g/L; p=0.75). Secondly, despite similar insulin concentrations (mean 24 h insulin , girls with poorly controlled diabetes 22.9±2.6 and girls with well-controlled diabetes 27.3±2.9 mU/L, respectively; p=0.26), there was a marked difference in IGFBP1 concentrations between the two groups with IDDM (mean IGFBP1 , girls with poorly controlled diabetes 70.5±9.1 ,g/L vs girls with well-controlled diabetes 28.6±3.3; p<0.001). Despite equally elevated GH concentrations that may induce insulin resistance, the markedly lower concentrations of IGFBP1 in the well-controlled group indicate a higher hepatic insulin sensitivity in these girls compared with those with a poor control. Furthermore, in spite of similar total IGF-I concentrations, the lower IGFBP1 concentrations may result in higher IGF-I bioactivity in the well-controlled group. This may be reflected in better growth of the well-controlled group whose height of 168.7±0.9 vs 163.6±1.2 cm was significantly different (p<0.004). IGFBP1 may be a marker of overall insulinization in adolescents with type 1 diabetes, independent of the absolute insulin dose used for therapy. [source]


Secretion of Prolactin and Growth Hormone in Relation to Ovarian Activity in the Dog

REPRODUCTION IN DOMESTIC ANIMALS, Issue 3-4 2001
HS Kooistra
In pregnant bitches an apparent increase in plasma prolactin concentrations is observed during the second half of pregnancy, mean plasma prolactin concentrations peak on the day of parturition, fall for the next 24,48 h and then rise again. During lactation, high plasma prolactin concentrations are observed. Plasma prolactin levels in non-pregnant bitches appear to be lower than in pregnant animals, particularly in the last part of the luteal phase. Pulsatile secretion of prolactin has been observed during the luteal phase and mid-anoestrus. Progression of the luteal phase is found to be associated with an increase in prolactin release. The association of a strong increase of prolactin release and a decrease of plasma progesterone concentrations has also been demonstrated in overtly pseudopregnant bitches. Elevated prolactin secretion during progression of the luteal phase in the bitch may play a role in mammogenesis and is important because of the luteotrophic action of prolactin. Acromegaly is a syndrome of tissue overgrowth and insulin resistance due to excessive growth hormone (GH) production. In the bitch, acromegaly can be induced either by endogenous progesterone or by exogenous progestagens. Progestagen-induced GH production in this species originates from foci of hyperplastic ductular epithelium of the mammary gland. Pulsatile secretion of GH has been observed in normal cyclic bitches. In contrast with the pulsatile GH secretion seen in healthy dogs, the progestagen-induced plasma GH levels in bitches with acromegaly do not have a pulsatile secretion pattern. Just as with prolactin, the plasma progesterone levels influence the secretion pattern of GH in the bitch. The pulsatile secretion pattern of GH changes during the progression of the luteal phase in healthy cyclic bitches, with higher basal GH secretion and less GH being secreted in pulses during the first part of the luteal phase. The progesterone-induced GH production may promote the proliferation and differentiation of mammary gland tissue during the luteal phase of the bitch by local autocrine/paracrine effects and may exert endocrine effects. [source]


A possible role of central serotonin in L-tryptophan-induced GH secretion in cattle

ANIMAL SCIENCE JOURNAL, Issue 3 2010
Etsuko KASUYA
ABSTRACT To clarify the role of serotonin (5-HT) in the regulatory mechanism of L-tryptophan (TRP)-induced growth hormone (GH) secretion in cattle, changes in 5-HT concentrations in the cerebrospinal fluid (CSF) in the third ventricle (3V) and GH in plasma before and after the peripheral infusion of TRP were determined simultaneously. The direct effect of TRP on GH release from the dispersed anterior pituitary cells was also assessed. A chronic cannula was placed in 3V by stereotaxic surgery, then CSF and blood were withdrawn under physiological conditions. TRP (38.5 mg/kg BW) was infused through an intravenous catheter from 12.00 to 14.00 hours and CSF and blood sampling were performed from 11.00 to 18.00 hours at 1-h intervals. The concentration of 5-HT in CSF was determined by high-performance liquid chromatography with electrochemical detection. GH, melatonin (MEL), and cortisol (CORT) concentrations were measured by radio-immunoassay and enzyme-immunoassay. Concentrations of 5-HT were increased by TRP infusion. The TRP infusion significantly increased GH release. On the other hand, TRP did not stimulate GH release from the bovine pituitary cells. MEL and CORT concentrations were not altered by TRP infusion. These results suggest that TRP induced GH release via the activation of serotonergic neurons in cattle. [source]


Growth Hormone Secretagogue Actions On The Pituitary Gland: Multiple Receptors For Multiple Ligands?

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 5-6 2000
Chen Chen
SUMMARY 1. Growth hormone (GH) secretion is thought to occur under the reciprocal regulation of two hypothalamic hormones, namely GH-releasing hormone (GHRH) and somatostatin (SRIF), through their engagement with specific cell-surface receptors on the anterior pituitary somatotropes. 2. In addition to GHRH and SRIF, synthetic GH-releasing peptides (GHRP) or GH secretagogue(s) (GHS) regulate GH release through the activation of a novel receptor, the GHS receptor (GHS-R). 3. The cloning of the GHS-R from human, swine and rat identifies a novel G-protein-coupled receptor involved in the control of GH secretion and supports the existence of an undiscovered hormone that may activate this receptor. 4. Varieties of intracellular signalling systems are suggested to mediate the action of GHS, which include changes in intracellular free Ca2+ ([Ca2+]i), cAMP, protein kinases A and C, phospholipase C etc. 5. With regard to the use of signalling systems by GHS, especially a new form of GHRP or GHRP-2, a clear species difference has been demonstrated, supporting the possibility of more than one type of GHS-R. [source]


Partial growth hormone deficiency in adults; should we be looking for it?

CLINICAL ENDOCRINOLOGY, Issue 4 2010
Stephen M. Shalet
Summary Quantitatively, GH secretion exists as a continuum in states ranging from good health through to hypopituitarism. Currently, GH replacement is considered only for adults designated as being severely GH deficient (GHD). In clinical practice the gold standard, on which the biochemical diagnosis of severe GHD is based, centres on the presence of two or more additional anterior pituitary hormone deficits. Cohorts of adults with partial GHD (Growth Hormone Insufficiency [GHI]) have been reported with adverse body composition changes, dyslipidaemia, insulin resistance, altered cardiac performance and increased carotid intima-media thickness. The diagnosis of GHI in an individual patient, however, is extremely difficult because such patients rarely exhibit additional anterior pituitary hormone deficits, and the levels of GH-dependent proteins, including IGF-I, are normal in the majority. Currently, GH replacement therapy should only be considered in a patient characterized as GHI by dynamic GH testing in whom there is a plausible cause for hypopituitarism and in whom the IGF-I level is pathologically low. [source]


Dynamics of GH secretion during incremental exercise in obesity, before and after a short period of training at different work-loads

CLINICAL ENDOCRINOLOGY, Issue 4 2010
Alberto Salvadori
Summary Background, Growth hormone (GH) secretion is normally sensitive to physical exercise. Intensity and duration of exercise, fitness and age can all influence the GH response to exercise. In obesity, GH secretion is decreased both in basal conditions and in response to exercise. Objective, To analyse the dynamics of GH response to a progressive cycloergometric test, conducted up to exhaustion, in adult normal subjects and obese patients, after a reconditioning program at different workloads. Design and methods, We studied eight lean subjects (four men, mean age 34·3 years, range 26,47 years, mean body mass index (BMI) 22·1 kg/m2). GH was sampled at baseline and during the last 30 s of each power output increase. Anaerobic threshold (AT) was detected by the V-slope method. The same test was carried out in 16 obese subjects (seven men, mean age 39·1 years, range 20,59 years, mean BMI 35·8 kg/m2) and repeated after a 4-week reconditioning program consisting of aerobic workout (Group A, eight subjects, three men, mean age 40·5 years, range 22,59 years, mean BMI 33·6 kg/m2), and aerobic plus anaerobic work (group B, eight subjects, four men, mean age 37·6 years, range 20,56 years, mean BMI 38·0 kg/m2) for 6 days/week, with no dietary restrictions. Results, Mean exercise peak occurred at higher intensity in controls (140 vs 110 W, P < 0·05), and AT exceeded at higher work outputs than in obese subjects (102 vs 74 W, P < 0·05). In controls, GH response to exercise was prompt and further sustained after AT; in obese subjects, GH increased slowly and insignificantly before AT, thereafter it increased to lower levels than in controls (P < 0·001). Following the reconditioning period, both Group A and Group B of obese subjects failed to improve exercise performance as well as GH response to exercise before AT; beyond AT, a greater GH response to exercise occurred in Group B than Group A (7·59 ± 0·32 ,g/l at peak of exercise) with significantly different Delta AUCs (Area Under the Curves) following AT: 30·5 ± 12 ,g.min/l in Group A vs 124·2 ± 38 ,g.min/l in Group B, P < 0·05. Conclusions Our results confirm the blunted GH response to exercise in obese adults when compared to lean counterparts. With obesity, aerobic training poorly increases the GH response beyond AT, while supplemental anaerobic workload appears to increase GH response beyond AT. These observations may have implications for the prescription of physical exercise, which is one of the recommendations in the management of obesity. [source]


Relationship of peak growth hormone to cardiovascular parameters, waist circumference, lipids and glucose in HIV-infected patients and healthy adults

CLINICAL ENDOCRINOLOGY, Issue 6 2009
Janet Lo
Summary Objective, Relative growth hormone (GH) deficiency is highly prevalent in patients with HIV. The purpose of this study was to investigate relationships of GH to metabolic and anthropometric parameters in HIV patients and non-HIV controls. Design, Peak GH and metabolic parameters were assessed in a cross-sectional study of 191 HIV patients and 62 age and BMI-matched healthy controls. Methods, Peak GH was assessed by GHRH/arginine stimulation testing. Results, HIV patients demonstrated similar BMI, but increased waist circumference (WC) and reduced peak GH to GHRH/arginine compared with control subjects [median = 12·4 (interquartile range: 6·3,24·8) vs. 21·3 (8·8, 34·5) ,g/l, P = 0·006, HIV vs. control]. Among HIV and non-HIV groups, peak GH was inversely associated with WC (rho = ,0·44, P < 0·0001; rho = ,0·63, P < 0·0001; HIV patients and controls, respectively), blood pressure (rho = ,0·17, P = 0·02; rho = ,0·36, P = 0·004), triglycerides (rho = ,0·37, P < 0·0001; rho = ,0·43, P = 0·001), glucose (rho = ,0·34, P < 0·0001; rho = ,0·30, P = 0·02), insulin (rho = ,0·43, P < 0·0001; rho = ,0·60, P < 0·0001) and CRP (rho = ,0·29, P < 0·0001; rho = ,0·59, P < 0·0001). Among HIV patients, the inverse association between peak GH and fasting glucose remained significant (, = ,0·006 mmol/l change in glucose per ,g/l change in GH, P = 0·004) controlling for age, gender, race, BMI, WC, protease inhibitor (PI) and nucleoside reverse transcriptase inhibitors. Similarly, the inverse association between peak GH and triglycerides remained significant (, = ,0·01 mmol/l change in triglycerides per ,g/l change in GH, P = 0·02) controlling for age, gender, race, BMI, WC, PI and lipid-lowering medications. HIV men with peak GH < 7·5 ,g/l demonstrated higher BMI, WC, SBP, triglycerides, glucose and CRP. Conclusions, Reduced GH secretion is independently associated with dyslipidaemia and higher glucose, among HIV patients with abdominal fat accumulation. [source]


Congenital hypopituitarism: clinical, molecular and neuroradiological correlates

CLINICAL ENDOCRINOLOGY, Issue 3 2009
Ameeta Mehta
Summary Objective, Recent studies have suggested that mutations in genes encoding several hypothalamo,pituitary (H,P) transcription factors result in hypopituitarism [isolated GH deficiency (IGHD) and combined pituitary hormone deficiency (CPHD)], which may in turn be related to the neuroanatomy revealed by magnetic resonance (MR) imaging. Although studies have focused on patients with either optic nerve hypoplasia (ONH) or isolated hypopituitarism with normal optic nerves, few studies have compared the two groups. We aimed to relate the clinical phenotype of a large cohort (n = 170) of children with congenital hypopituitarism including septo-optic dysplasia (SOD) attending a single centre to the neuroradiological and genetic findings. Design, Clinical, biochemical, MR imaging and molecular data were analysed retrospectively in 170 patients with or ,at-risk' (with ONH) of hypopituitarism to determine predictors of hypopituitarism. Results, The presence of ONH was significantly associated with an absent septum pellucidum [odds ratio (OR) 31·5, 95% confidence intervals (CI) 7·3,136·6, P < 0·001], an abnormal corpus callosum (OR 10·5, 95% CI 3·8,28·6, P < 0·001) and stalk abnormalities (OR 2·3, 95% CI 1·2,4·2, P = 0·009). The risk of hypopituitarism was 27·2 times greater in patients with an undescended posterior pituitary (95% CI 3·6,205·1, P < 0·001). Anterior pituitary hypoplasia (OR 3·1, 95% CI 1·3,7·0, P = 0·006) and an absent pituitary stalk (P < 0·001) were also significantly associated with hypopituitarism. With respect to the type or severity of hypopituitarism, CPHD was more often associated with an abnormal corpus callosum (OR 6·1, 95% CI 1·4,27·4, P = 0·008) and stalk abnormalities (OR 2·8, 95% CI 1·3,6·1, P = 0·006). Male to female ratio was significantly greater in patients with normal optic nerves (3·3:1) as compared with those with ONH (1·2:1). The prevalence of diabetes insipidus, thyrotrophin and ACTH deficiencies was significantly greater in patients with ONH as compared with ,idiopathic' hypopituitarism. Mutations in pituitary transcription factors and genes regulating GH secretion were rare (5/170) in this cohort of patients with sporadic hypopituitarism. Conclusion, Our data suggest that individuals presenting with ONH are at high risk for neuroradiologic and endocrine abnormalities. The neuroradiologic features are predictive not only of the presence, but also of the type, of hypopituitarism. The association of midline abnormalities with hypopituitarism in this cohort suggests a common developmental origin for these features, the aetiology of which remains unidentified in the majority of cases. [source]


Perioperative plasma active and total ghrelin levels are reduced in acromegaly when compared with in nonfunctioning pituitary tumours even after normalization of serum GH

CLINICAL ENDOCRINOLOGY, Issue 1 2007
Takakazu Kawamata
Summary Objective, Ghrelin is a novel gastric peptide known to stimulate GH secretion, but the relationship between ghrelin and the GH-insulin-like growth factor (IGF)-1 axis in GH excess or deficiency is poorly understood. This study investigated dysregulation of ghrelin secretion in acromegaly and its short-term postoperative recovery. Methods, A prospective study was conducted on eight patients who underwent complete transsphenoidal resection of GH-producing pituitary adenomas (acromegaly group) and 22 for endocrinologically nonfunctioning pituitary tumours (control group). Active and total plasma ghrelin levels were measured serially before and after surgery. Results, Preoperative active and total plasma ghrelin concentrations (mean ± SD; fmol/ml) were significantly reduced in acromegalic patients when compared with those in the controls (9·6 ± 4·3 and 157·4 ± 65·6 vs. 21·8 ± 13·0 and 267·1 ± 111·4; P = 0·023 and P = 0·021, respectively). Both levels were still significantly suppressed on postoperative Day 7 in the acromegaly group when compared with those in the control group (11·7 ± 4·3 and 197·8 ± 68·9 vs. 22·5 ± 12·6 and 302·7 ± 100·0; P = 0·038 and P = 0·018, respectively). The ratios of active to total ghrelin were not significantly different between the two groups before and after operation. In acromegalic patients, active and total ghrelin levels remained significantly suppressed even after normalization of serum GH levels. Conclusions, The putative negative feedback mechanism of GH on ghrelin secretion may in part account for the low ghrelin levels observed in acromegalic patients, and the mechanism may persist even after normalization of serum GH. [source]


Ghrelin does not regulate the GH response to insulin-induced hypoglycaemia in children but could be involved in the regulation of cortisol secretion

CLINICAL ENDOCRINOLOGY, Issue 1 2007
J. Huber
Summary Objective, Ghrelin activates the growth hormone secretagogue receptor GHS-R. It strongly stimulates GH secretion and has a role in energy homeostasis. The relationship between plasma ghrelin and cortisol levels during insulin-induced hypoglycaemia in prepubertal and pubertal children has not yet been investigated. The aim of the present study was to establish whether insulin-induced hypoglycaemia stimulates ghrelin secretion and whether changes in ghrelin concentrations are related to changes in GH and cortisol in children. Design and patients, We studied a group of 20 children and adolescents (five girls, 15 boys, mean age 10·8 ± 3·7 years) undergoing insulin tolerance tests (ITTs) for clinical investigation of GH deficiency. Measurements, Stimulation tests were performed to investigate the relationship between ghrelin, GH, cortisol and glucose levels according to age and pubertal stage by determining the ghrelin profiles during insulin-induced hypoglycaemia (at 0, 60 and 120 min). Results, Ghrelin was significantly and inversely related to body weight, height, body mass index (BMI) and age of children (P < 0·05). Significant changes in ghrelin levels (P = 0·00013) were found after the insulin bolus, with a decline at 60 min and an increase to baseline values at 120 min. Changes in cortisol levels were negatively correlated with changes in ghrelin at 60 min (r = ,0·59, P = 0·004) and at 120 min (r = ,0·605, P = 0·003). Conclusions, This study shows that ghrelin might not regulate the GH response to insulin-induced hypoglycaemia in prepubertal and pubertal children. A role for ghrelin in the regulation of cortisol secretion can be hypothesized concerning the negative correlation between changes in ghrelin and cortisol. Furthermore, the results imply that ghrelin secretion is age dependent and is a function of growth. [source]


Modulation of growth hormone action by sex steroids

CLINICAL ENDOCRINOLOGY, Issue 4 2006
Udo J. Meinhardt
Summary Growth hormone (GH) is a major regulator of growth, somatic development and body composition. Sex steroids can act centrally by regulating GH secretion and peripherally modulating GH responsiveness. This review addresses data of potential clinical relevance on how sex steroids modulate GH secretion and action, aiming to increase the understanding of sex steroid/GH interactions and leading to improved management of patients. Sex steroids regulate GH secretion directly as well as indirectly through IGF-I modulation. Testosterone stimulates GH secretion centrally, an effect dependent on prior aromatization to oestrogen. Oestrogen stimulates GH secretion indirectly by reducing IGF-I feedback inhibition. Whether oestrogen stimulates GH secretion centrally in females is unresolved. Gonadal steroids modify the metabolic effects of GH. Testosterone amplifies GH stimulation of IGF-I, sodium retention, substrate metabolism and protein anabolism while exhibiting similar but independent actions of its own. Oestrogen attenuates GH action by inhibiting GH-regulated endocrine function of the liver. This is a concentration-dependent phenomenon that arises invariably from oral administration of therapeutic doses of oestrogen, an effect that can be avoided by using a parenteral route. This strong modulatory effect of gonadal steroids on GH responsiveness provides insights into the biological basis of sexual dimorphism in growth, development and body composition and practical information for the clinical endocrinologist. It calls for an appraisal of the diagnostic criteria for GH deficiency of GH stimulation tests, which currently are based on arbitrary cut-offs that do not take into account the shifting baseline from the changing gonadal steroid milieu. In the management of GH deficiency in the hypopituitary female, oestrogen should be administered by a nonoral route. In hypopituitary men, androgens should be replaced concurrently to maximize the benefits of GH. In the general population, the metabolic consequences of long-term treatment of women with oral oestrogen compounds, including selective oestrogen receptor modulators, are largely unknown and warrant study. [source]


Effect of obesity and morbid obesity on the growth hormone (GH) secretion elicited by the combined GHRH + GHRP-6 test

CLINICAL ENDOCRINOLOGY, Issue 6 2006
Fahrettin Kelestimur
Summary Objective, Obesity is characterized by low basal levels of growth hormone (GH) and impeded GH release. However, the main problem arises in the diagnosis of GH deficiency in adults, as all accepted cut-offs in the diagnostic tests of GH reserve are no longer valid in obese subjects. In this work, the role of obesity in the GH response elicited by the GHRH + GHRP-6 test was assessed in a large population of obese and nonobese subjects. Patients, GHRH + GHRP-6-induced GH peaks were evaluated in 542 subjects. One hundred and five were healthy obese, 50 were morbid obese, and 261 were nonobese (both normal weight and overweight). One hundred and seventy-six GH-deficient patients (obese and nonobese) were also studied. Results, A regression analysis of the 366 subjects with normal pituitary function indicated that adiposity had a negative effect on the elicited GH peak (r = ,0·503, P < 0·0001). A receiver operating characteristic (ROC) curve analysis showed that in subjects with a BMI 35, the currently accepted cut-offs of the GHRH + GHRP-6 test (GH peaks 20 µg/l: normal secretion; GH peaks 10 µg/l: GH deficiency), were fully operative. However, in subjects with a BMI > 35, normality was indicated by GH peaks 15 µg/l and GH deficiency by peaks 5 µg/l (1 µg/l = 2·6 mU/l). Conclusions, This study confirms: (a) that the combined provocative test is adequate to separate normal and GH-deficient subjects; (b) the negative effect of obesity on GH secretion; (c) that obesity accounts for 25% of the reduction of GH release; and (d) that present cut-off values are applicable to normal weight, overweight and grade I obesity subjects, whereas in obese subjects with a BMI exceeding 35, all the normative limits of the GHRH-GHRP +6 test must be reduced by 5 µg/l. [source]


Insulin sensitivity in growth hormone-deficient children: influence of replacement treatment

CLINICAL ENDOCRINOLOGY, Issue 4 2004
Giorgio Radetti
Summary objective, In adults, excessive GH secretion may lead to secondary diabetes mellitus, while prolonged GH treatment may accelerate the onset of type 2 diabetes mellitus in predisposed children. The aim of the study was to evaluate insulin sensitivity (IS) and glucose tolerance (GT) in a group of GH-deficient children treated with GH for a period of 6 years. patients and design, One hundred and twenty-eight children (40 females, 88 males) were included in the study. At the beginning of treatment chronological age was 8·9 ± 3·2 years, height standard deviation score (SDS) ,2·43 ± 0·90 and body mass index (BMI) SDS 0·18 ± 1·60. At the end of the study chronological age was 13·0 ± 2·9 years, height SDS ,1·24 ± 1·27 and BMI SDS 0·23 ± 1·54. GH was administered at a mean weekly dosage of 0·3 mg/kg, injected subcutaneously over 6,7 days. GT was assessed according to the criteria of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. IS was evaluated with the quantitative insulin sensitivity check index (QUICKI). results, No cases of impaired GT or diabetes were recorded during the follow-up period. IS, already lower than in controls before starting treatment with GH, decreased significantly during the first year of therapy (QUICKI: 0·346 ± 0·033 vs. 0·355 ± 0·044, P < 0·05), with no further decrease in the following years. No correlation was found between QUICKI, BMI, years of treatment and onset of puberty. conclusions, GH treatment in GH-deficient children does not lead to an impaired GT or type 2 diabetes mellitus, although it does significantly decrease IS. [source]


Impaired GH secretion to provocative stimuli in two families with hypocalciuric hypercalcaemia

CLINICAL ENDOCRINOLOGY, Issue 5 2003
Elisabetta Cecconi
Summary objective, To determine whether hypercalcemia per se might be responsible for an impairment in GH secretion. design, Prospective study. patients, Six subjects of two unrelated families with familial hypocalciuric hypercalcaemia (FHH), an autosomal dominant disorder due to inactivating mutations in the calcium receptor gene, leading to an increase in serum calcium levels and inappropriately normal serum PTH concentrations. Forty normal subjects, matched for sex and age served as controls. measurements, Serum GH concentrations were measured after GHRH-Arginine (GHRH-Arg) stimulation test; serum IGF-I, ACTH, cortisol, FT4, FT3, TSH, PRL, LH, FSH levels were measured under basal conditions. results, All subjects (two male, four female, age range 24,74 years) had increased serum ionized calcium levels (range 1·36,1·56 mmol/l) and five of six patients had normal PTH levels (range for all patients was 14,68 ng/l). Basal serum GH concentrations ranged from 0·1 to 7·0 µg/l. Mean serum GH secretory peak after GHRH-Arg stimulation test was reduced in five subjects (mean 9·3 ± 3·6 µg/l, P < 0·006 vs. Controls, mean 67·0 ± 44·0 µg/l, cut-off, 16·0 µg/l) and normal in one subject (38·7 µg/l). However, serum IGF-I levels were reduced only in two patients (29 and 57 µg/l) and normal in four subjects (range 127,208 µg/l). The basal secretion of the other anterior pituitary hormones was within their normal ranges. conclusions, The results of the present study support the concept that elevated serum calcium levels impair GH secretion. However, the clinical relevance of GH deficiency in FHH remains to be elucidated. [source]


Re-assessment of growth hormone secretion in young adult patients with childhood-onset growth hormone deficiency

CLINICAL ENDOCRINOLOGY, Issue 4 2003
Juliane Donaubauer
Summary objective Patients with childhood-onset GH deficiency (coGHD) need retesting in late adolescence or young adulthood to verify whether they need to continue GH treatment. For this purpose the Growth Hormone Research Society (GRS) recommends the insulin tolerance test (ITT), or as an alternative the arginine + growth hormone releasing hormone test (ARG + GHRH test) as a diagnostic tool in adolescents and adults. However, there are no standardized cut-off levels based on normal GH secretion for determining GHD vs. GH sufficiency in young adults for the ITT, the ARG + GHRH test or the pyridostigmine + GHRH (PD + GHRH) test, a further new GH stimulation test. patients and measurements We studied 43 patients (28 with organic coGHD, 15 with idiopathic coGHD; 30 males, 13 females; aged 20·4 years, range 16·2,25·4; body mass index 23·5, range 16·3,35·8) using the ARG [0·5 g/kg intravenously (i.v.)] + GHRH (1 µg/kg i.v.) test, the PD (120 mg orally) + GHRH (1 µg/kg i.v.) test and the ITT (0·1 IU/kg i.v.) and compared these data with the results of 40 healthy age- and weight-matched volunteers. results The GH response in patients was significantly lower than in healthy controls: ARG + GHRH test, 0·8 µg/l (interquartile range 0·3,2·6) vs. 51·8 µg/l (32·6,71·2) in controls (P < 0·0001); PD + GHRH test, 0·9 µg/l (0·3,1·9) vs. 40·4 µg/l (27·1,54·4) in controls (P < 0·0001); ITT, 0.1 µg/l (0·0,0·8) vs. 20·3 µg/l (14·7,31·7) in controls (P < 0·0001). In the ARG + GHRH test we found a diagnostic sensitivity of 100% and a specificity of 97·5% for a cut-off range from 15·1 to 20·3 µg/l, in the PD + GHRH test a sensitivity of 100% and a specificity of 97% (cut-off range 9·1,13·1 µg/l) and in the ITT a sensitivity and specificity of 100% each within a cut-off range from 2·7 to 8·8 µg/l. conclusion There were no marked differences in sensitivity and specificity in young adults among ARG + GHRH test, PD + GHRH test and the ITT in assessing GH secretion. Because of the lack of side-effects, the ARG + GHRH test is the recommended method for re-evaluation of coGHD in young adults when pituitary GHD is suspected. Furthermore, in adult patient groups where organic pituitary coGHD is common, the ITT may be completely replaced by the ARG + GHRH test. Because of the predominance of hypothalamic GHD in childhood, the ITT is commonly performed for the re-evaluation of patients with childhood-onset GHD because of its mechanism of GH stimulation. The present results confirm the high discriminatory capability of the ITT in young adults. [source]


Endocrine responses to ghrelin in adult patients with isolated childhood-onset growth hormone deficiency

CLINICAL ENDOCRINOLOGY, Issue 6 2002
Gianluca Aimaretti
Summary objective Ghrelin, a 28 amino acid acylated peptide, is a natural ligand of the GH secretagogues (GHS) receptor (GHS-R), which is specific for synthetic GHS. Similar to synthetic GHS, ghrelin strongly stimulates GH secretion but also displays significant stimulatory effects on lactotroph and corticotroph secretion. It has been hypothesized that isolated GH deficiency (GHD) could reflect hypothalamic impairment that would theoretically involve defect in ghrelin activity. patients In the present study, we verified the effects of ghrelin (1 µg/kg i.v.) on GH, PRL, ACTH and cortisol levels in adult patients with isolated severe GHD [five males and one female, age (mean ± SEM) 24·7 ± 2·6 years, BMI 25·7 ± 2·7 kg/m2]. In all patients, the GH response to insulin-induced hypoglycaemia (ITT, 0·1 IU regular insulin i.v.) and GH releasing hormone (GHRH) (1 µg/kg i.v.) + arginine (ARG, 0·5 g/kg i.v.) was also studied. The hormonal responses in GHD were compared with those in age-matched normal subjects (NS, seven males, age 28·6 ± 2·9 years, BMI 22·1 ± 0·8 kg/m2). results IGF-I levels in GHD were markedly lower than in NS (69·8 ± 11·3 vs. 167·9 ± 19·2 µg/l, P < 0·003). Ghrelin administration induced significant increase in GH, PRL, ACTH and cortisol levels in all GHD. In GHD, the GH response to ghrelin was higher (P < 0·05) than that to GHRH + ARG, which, in turn, was higher (P < 0·05) than that to ITT (9·2 ± 4·1 vs. 5·3 ± 1·7 vs. 1·4 ± 0·4 µg/l). These GH (1 µg/l = 2 mU/l) responses in GHD were markedly lower (P < 0·0001) than those in NS (ghrelin vs. GHRH + ARG vs. ITT 92·1 ± 16·7 vs. 65·3 ± 8·9 vs. 17·7 ± 3·5 µg/l). In GHD, the highest individual peak GH response to ghrelin was markedly lower than the lowest peak GH response in NS (28·5 vs. 42·9 µg/l). GHD and NS showed overlapping PRL (1 µg/l = 32 mU/l) (10·0 ± 1·4 vs. 14·9 ± 2·2 µg/l), ACTH (22·3 ± 5·3 vs. 18·7 ± 4·6 pmol/l) and cortisol responses (598·1 ± 52·4 vs. 486·9 ± 38·9 nmol/l). conclusions This study shows that ghrelin is one of the most powerful provocative stimuli of GH secretion, even in those patients with isolated severe GHD. In this condition, however, the somatotroph response is markedly reduced while the lactotroph and corticotroph responsiveness to ghrelin is fully preserved, indicating that this endocrine activity is fully independent of mechanisms underlying the GH-releasing effect. These results do not support the hypothesis that ghrelin deficiency is a major cause of isolated GH deficiency but suggest that ghrelin might represent a reliable provocative test to evaluate the maximal GH secretory capacity provided that appropriate cut-off limits are assumed. [source]


Increased insulin sensitivity in young, growth hormone deficient children

CLINICAL ENDOCRINOLOGY, Issue 1 2001
Sandra Husbands
OBJECTIVE Although growth hormone (GH) has well documented insulin antagonistic effects, GH deficient adults often demonstrate insulin resistance. In young GH deficient children, increased susceptibility to hypoglycaemia might indicate increased insulin sensitivity; however, this has not been documented. We therefore determined insulin sensitivity in GH deficient and GH sufficient children. DESIGN AND PATIENTS Prospective study of children undergoing insulin tolerance tests for clinical investigation of GH or cortisol secretion at a regional Paediatric Endocrine/Growth Clinic between October 1986 and December 1997. Ninety-one tests were performed in children with GH deficiency and 142 tests in children with normal GH response to insulin (peak GH , 20 IU/l). MEASUREMENTS The standard insulin tolerance test was modified to permit frequent measurements of glucose (0, 5, 10, 15, 20, 30, 45, 60 and 90 minutes). Rate of log glucose disappearance in the first 15 minutes was calculated as a direct measure of insulin sensitivity. RESULTS GH deficient children were more insulin sensitive than GH sufficient children (P = 0·004) and had lower glucose nadirs post-insulin (P = 0·005). Subgroup analysis revealed that these differences were greater in younger (< 12 years old) or pre/early pubertal children. In 14 prepubertal children, exogenous sex steroid priming resulted in lower insulin sensitivity (P < 0·05) compared to nonprimed tests. CONCLUSIONS Young GH deficient children were more insulin sensitive than children with normal GH secretion. This difference attenuated with age and puberty, possibly secondary to pubertal sex steroids; however, insulin resistance as reported in GH deficient adults, was not observed in adolescents. [source]