Home About us Contact | |||
GFP Fusions (gfp + fusion)
Terms modified by GFP Fusions Selected AbstractsInsertion of light-harvesting chlorophyll a/b protein into the thylakoidFEBS JOURNAL, Issue 4 2000Topographical studies The major light-harvesting chlorophyll a/b -binding protein (Lhcb1,2) of photosystem II is inserted into the thylakoid via the signal recognition particle dependent pathway. However, the mechanism by which the protein enters the membrane is at this time unknown. In order to define some topographical restrictions for this process, we constructed several recombinant derivatives of Lhcb1 carrying hexahistidine tags at either protein terminus or in the stromal loop domain. Additionally, green fluorescent protein (GFP) was fused to either terminus. None of the modifications significantly impair the pigment-binding properties of the protein in the in vitro reconstitution of LHCII. With the exception of the C-terminal GFP fusion, all mutants stably insert into isolated thylakoids in the absence of Ni2+ ions. The addition of low concentrations of Ni2+ ions abolishes the thylakoid insertion of C-terminally His-tagged mutants whereas the other His-tagged proteins fail to insert only at higher Ni2+ concentrations. The C-terminus of Lhcb1 must cross the membrane during protein insertion whereas the other sites of Lhcb1 modification are positioned on the stromal side of LHCII. We conclude that a Ni2+ -complexed His tag and fusion to GFP inhibit translocation of the protein C-terminus across the thylakoid. Our observations indicate that the N-terminal and stromal domain of Lhcb1 need not traverse the thylakoid during protein insertion and are consistent with a loop mechanism in which only the C-terminus and the lumenal loop of Lhcb1 are translocated across the thylakoid. [source] Identification of a novel family of 70 kDa microtubule-associated proteins in Arabidopsis cellsTHE PLANT JOURNAL, Issue 4 2005Andrey V. Korolev Summary Most plant microtubule-associated proteins (MAPs) have homologues across the phylogenetic spectrum. To find potential plant-specific MAPs that will have evaded bioinformatic searches we devised a low stringency method for isolating proteins from an Arabidopsis cell suspension on endogenous taxol-microtubules. By tryptic peptide mass fingerprinting we identified 55 proteins that were enriched on taxol-microtubules. Amongst a range of known MAPs, such as kinesins, MAP65 isoforms and MOR1, we detected ,unknown' 70 kDa proteins that belong to a family of five closely related Arabidopsis proteins having no known homologues amongst non-plant organisms. To verify that AtMAP70-1 associates with microtubules in vivo, it was expressed as a GFP fusion. This confirmed that the protein decorates all four microtubule arrays in both transiently infected Arabidopsis and stably transformed tobacco BY-2 suspension cells. Microtubule-directed drugs perturbed the localization of AtMAP70-1 but cytochalasin D did not. AtMAP70-1 contains four predicted coiled-coil domains and truncation studies identified a central domain that targets the fusion protein to microtubules in vivo. This study therefore introduces a novel family of plant-specific proteins that interact with microtubules. [source] Cell,cell communication in filamentous cyanobacteriaMOLECULAR MICROBIOLOGY, Issue 4 2008Robert Haselkorn Summary Although cytoplasmic bridges between adjacent cells in the filaments of nitrogen-fixing cyanobacteria have been known for decades, the existence also of a continuous periplasm along the filaments raised the possibility that alternative modes of communication between cells could be utilized. The latter hypothesis was investigated by using GFP fusions to proteins whose expression is cell-specific and engineered to be transported into the periplasm. Two groups have recently obtained contradictory results, one supporting periplasmic transport of GFP from cell to cell, the other not. A third effort, involving members of the first group, used a smaller, soluble fluorophore and found rapid communication via the cytoplasmic bridges between cells. The dilemma of periplasmic diffusion remains unresolved. [source] A CDPK isoform participates in the regulation of nodule number in Medicago truncatulaTHE PLANT JOURNAL, Issue 6 2006Pablo R. Gargantini Summary Medicago spp. are able to develop root nodules via symbiotic interaction with Sinorhizobium meliloti. Calcium-dependent protein kinases (CDPKs) are involved in various signalling pathways in plants, and we found that expression of MtCPK3, a CDPK isoform present in roots of the model legume Medicago truncatula, is regulated during the nodulation process. Early inductions were detected 15 min and 3,4 days post-inoculation (dpi). The very early induction of CPK3 messengers was also present in inoculated M. truncatuladmi mutants and in wild-type roots subjected to salt stress, indicating that this rapid response is probably stress-related. In contrast, the later response was concomitant with cortical cell division and the formation of nodule primordia, and was not observed in wild-type roots inoculated with nod,, strains. This late induction correlated with a change in the subcellular distribution of CDPK activities. Accordingly, an anti- MtCPK3 antibody detected two bands in soluble root extracts and one in the particulate fraction. CPK3::GFP fusions are targeted to the plasma membrane in epidermal onion cells, a localization that depends on myristoylation and palmitoylation sites of the protein, suggesting a dual subcellular localization. MtCPK3 mRNA and protein were also up-regulated by cytokinin treatment, a hormone linked to the regulation of cortical cell division and other nodulation-related responses. An RNAi-CDPK construction was used to silence CPK3 in Agrobacterium rhizogenes -transformed roots. Although no major phenotype was detected in these roots, when infected with rhizobia, the total number of nodules was, on average, twofold higher than in controls. This correlates with the lack of MtCPK3 induction in the inoculated super-nodulator sunn mutant. Our results suggest that CPK3 participates in the regulation of the symbiotic interaction. [source] Differential regulation of TGA transcription factors by post-transcriptional controlTHE PLANT JOURNAL, Issue 5 2002Dominique Pontier Summary Transcription factors often belong to multigene families and their individual contribution in a particular regulatory network remains difficult to assess. We show here that specific members from a family of conserved Arabidopsis bZIP transcription factors, the TGA proteins, are regulated in their protein stability by developmental stage-specific proteolysis. Using GFP fusions of three different Arabidopsis TGA factors that represent members of distinct subclasses of the TGA factor family, we demonstrate that two of these TGA proteins are specifically targeted for proteolysis in mature leaf cells. Using a supershift gel mobility assay, we found evidence for similar regulation of the cognate proteins as compared to the GFP fusion proteins expressed under the cauliflower mosaic virus (CaMV) 35S promoter. Using various inhibitors, we showed that the expression of at least one of these three TGA factors could be stabilized by inhibition of proteasome-mediated proteolysis. This study indicates that TGA transcription factors may be regulated by distinct pathways of targeted proteolysis that can serve to modulate the contribution of specific members of a multigene family in complex regulatory pathways. [source] Use of a site-specific recombination-based biosensor for detecting bioavailable toluene and related compounds on rootsENVIRONMENTAL MICROBIOLOGY, Issue 4 2003N. Carol Casavant Summary We constructed and characterized a plasmid-based genetic system that reports the expression of a toluene-responsive promoter (PtbuA1) by effecting an irreversible, heritable change in the biosensor cell. Expression of the reporter gene gfp is strongly repressed in the absence of expression from the PtbuA1 promoter, and high level gfp expression in the original cell and its progeny is mediated by the site-specific recombination machinery of bacteriophage P22 to initiate removal of a repressor cassette. The reporter plasmid pTolLHB was functional in two soil saprophytes, Pseudomonas fluorescens A506 and Enterobacter cloacae JL1157, with the efficiency and sensitivity to low toluene concentrations being optimal in P. fluorescens A506. In culture, 80,100% of the A506 (pTolLHB) population expressed gfp following exposure to 0.2 µm toluene for one to three hours. Compared to the response of A506 containing a plasmid-borne PtbuA1 - gfp fusion, the recombination-based biosensor was more sensitive at detecting low toluene and trichloroethylene concentrations. An A506 (pTolLHB) inoculum, which had a background of 2.5% of the cells expressing gfp, was introduced onto barley roots in soil microcosms. If toluene was introduced into the microcosms, after 24 h, 72% of the A506 (pTolLHB) cells recovered from roots expressed gfp, indicating bioavailable toluene to rhizosphere bacteria. When toluene was not introduced, 16.5% of the A506 (pTolLHB) cells recovered from the roots expressed gfp, indicating that natural inducers of the PtbuA1 promoter were present in the barley rhizosphere. When introduced into rhizotrons containing barley plants and toluene vapours, the biosensor allowed localization of the availability of toluene along the seminal roots. In rhizotrons that were not exposed to toluene vapours, the biosensor exhibited high PtbuA1 -promoter activity in distinct regions along the seminal roots, indicating spatial heterogeneity plant- or rhizosphere microbial community-derived inducers of the PtbuA1 promoter. This recombination-based toluene biosensor thus was useful in identifying bacterial exposure to transient or low levels of toluene, or related compounds, directly in the environment. [source] TlpC, a novel chemotaxis protein in Rhodobacter sphaeroides, localizes to a discrete region in the cytoplasmMOLECULAR MICROBIOLOGY, Issue 5 2002G. H. Wadhams Summary TlpC is encoded in the second chemotaxis operon of Rhodobacter sphaeroides. This protein shows some homology to membrane-spanning chemoreceptors of many bacterial species but, unlike these, is essential for R. sphaeroides chemotaxis to all compounds tested. Genomic replacement of tlpC with a C-terminal gfp fusion demonstrated that TlpC localized to a discrete cluster within the cytoplasm. Immunogold electron microscopy also showed that TlpC localized to a cytoplasmic electron-dense region. Correct TlpC,GFP localization depended on the downstream signalling proteins, CheW3, CheW4 and CheA2, and was tightly linked to cell division. Newly divided cells contained a single cluster but, as the cell cycle progressed, a second cluster appeared close to the initial cluster. As elongation continued, these clusters moved apart so that, on septation, each daughter cell contained a single TlpC cluster. The data presented suggest that TlpC is either a cytoplasmic chemoreceptor responding to or integrating global signals of metabolic state or a novel and essential component of the chemotaxis signalling pathway. These data also suggest that clustering is essential for signalling and that a mechanism may exist for targeting and localizing proteins within the bacterial cytoplasm. [source] |