Home About us Contact | |||
GFAP-positive Cells (gfap-positive + cell)
Selected AbstractsIncreased osteopontin expression following intranigral lipopolysaccharide injection in the ratEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2005Joanna Iczkiewicz Abstract Nigral cell death in Parkinson's disease is characterized by glial cell activation leading to inflammatory changes. Osteopontin (OPN) is a glycosylated phosphoprotein that is induced by inflammatory mediators and which we have previously shown to be present in the substantia nigra. However, the role of OPN in the nigral inflammation is not known. We now report on the effects of lipopolysaccharide (LPS)-induced glial cell activation in the substantia nigra of rats on OPN expression. LPS administration induced dopaminergic cell death as shown by reduced nigral tyrosine hydroxylase immunoreactivity. There was a corresponding time-dependent increase in both OPN mRNA, which was maximal at 48 h, and protein levels, which peaked at 72 h before returning to control levels by 120 h. This increase was accompanied by marked reactive gliosis as shown by increased OX-42, glial fibrillary acidic protein (GFAP) and ED1 immunoreactivity. OX-42-positive cells increased in a time-dependent manner, peaking at 72 h before returning to control levels at 120 h. Similarly, ED1-positive cells were present in their greatest numbers at 24 h but then gradually declined. These changes mirrored the alterations occurring in OPN protein and OPN mRNA, respectively. In contrast, GFAP-positive cells only started to increase in number at 120 h. Colocalization studies showed that OPN was present in both ED1- and OX-42-positive cells but not in GFAP-positive cells. These data confirm that intranigral injection of LPS induces a rapid and marked gliosis that accompanies the loss of tyrosine hydroxylase-positive neurones and suggest that, after glial cell activation, enhanced expression of OPN occurs linked to increased numbers of microglia and/or macrophages. This suggests that OPN may be functionally important in the control of inflammatory changes. [source] Chlorotoxin-sensitive Ca2+ -activated Cl, channel in type R2 reactive astrocytes from adult rat brainGLIA, Issue 4 2003Stanislava Dalton Abstract Astrocytes express four types of Cl, or anion channels, but Ca2+ -activated Cl, (ClCa) channels have not been described. We studied Cl, channels in a morphologically distinct subpopulation (, 5% of cells) of small (10,12 ,m, 11.8 ± 0.6 pF), phase-dark, GFAP-positive native reactive astrocytes (NRAs) freshly isolated from injured adult rat brains. Their resting potential, ,57.1 ± 4.0 mV, polarized to ,72.7 ± 4.5 mV with BAPTA-AM, an intracellular Ca2+ chelator, and depolarized to ,30.7 ± 6.1 mV with thapsigargin, which mobilizes Ca2+ from intracellular stores. With nystatin-perforated patch clamp, thapsigargin activated a current that reversed near the Cl, reversal potential, which was blocked by Cl, channel blockers, 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) and Zn2+, by I, (10 mM), and by chlorotoxin (EC50 = 47 nM). With conventional whole-cell clamp, NPPB- and Zn2+ -sensitive currents became larger with increasing [Ca2+]i (10, 150, 300 nM). Single-channel recordings of inside-out patches confirmed Ca2+ sensitivity of the channel and showed open-state conductances of 40, 80, 130, and 180 pS, and outside-out patches confirmed sensitivity to chlorotoxin. In primary culture, small phase-dark NRAs developed into small GFAP-positive bipolar cells with chlorotoxin-sensitive ClCa channels. Imaging with biotinylated chlorotoxin confirmed the presence of label in GFAP-positive cells from regions of brain injury, but not from uninjured brain. Chlorotoxin-tagged cells isolated by flow cytometry and cultured up to two passages exhibit positive labeling for GFAP and vimentin, but not for prolyl 4-hydroxylase (fibroblast), A2B5 (O2A progenitor), or OX-42 (microglia). Expression of a novel chlorotoxin-sensitive ClCa channel in a morphologically distinct subpopulation of NRAs distinguishes these cells as a new subtype of reactive astrocyte. GLIA 42:325,339, 2003. © 2003 Wiley-Liss, Inc. [source] Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer's diseaseJOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2005Akihito Ishigami Abstract Citrullinated proteins are the products of a posttranslational process in which arginine residues undergo modification into citrulline residues when catalyzed by peptidylarginine deiminases (PADs) in a calcium ion-dependent manner. In our previous report, PAD2 expressed mainly in the rat cerebrum became activated early in the neurodegenerative process. To elucidate the involvement of protein citrullination in human neuronal degeneration, we examined whether citrullinated proteins are produced during Alzheimer's disease (AD). By Western blot analysis with antimodified citrulline antibody, citrullinated proteins of varied molecular weights were detected in hippocampal tissues from patients with AD but not normal humans. Two of the citrullinated proteins were identified as vimentin and glial fibrillary acidic protein (GFAP) by using two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. Interestingly, PAD2 was detected in hippocampal extracts from AD and normal brains, but the amount of PAD2 in the AD tissue was markedly greater. Histochemical analysis revealed citrullinated proteins throughout the hippocampus, especially in the dentate gyrus and stratum radiatum of CA1 and CA2 areas. However, no citrullinated proteins were detected in the normal hippocampus. PAD2 immunoreactivity was also ubiquitous throughout both the AD and the normal hippocampal areas. PAD2 enrichment coincided well with citrullinated protein positivity. Double immunofluorescence staining revealed that citrullinated protein- and PAD2-positive cells also coincided with GFAP-positive cells, but not all GFAP-positive cells were positive for PAD2. As with GFAP, which is an astrocyte-specific marker protein, PAD2 is distributed mainly in astrocytes. These collective results, the abnormal accumulation of citrullinated proteins and abnormal activation of PAD2 in hippocampi of patients with AD, strongly suggest that PAD has an important role in the onset and progression of AD and that citrullinated proteins may become a useful marker for human neurodegenerative diseases. © 2005 Wiley-Liss, Inc. [source] Age-dependent and tissue-specific CAG repeat instability occurs in mouse knock-in for a mutant Huntington's disease geneJOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2001Hiroshi Ishiguro Abstract Huntington's disease (HD) is a neurodegenerative disorder characterized by the expansion of CAG repeats in exon 1 of the HD gene. To clarify the instability of expanded CAG repeats in HD patients, an HD model mouse has been generated by gene replacement with human exon 1 of the HD gene with expansion to 77 CAG repeats. Chimeric proteins composed of human mutated exon 1 and mouse huntingtin are expressed ubiquitously in brain and peripheral tissues. One or two CAG repeat expansion was found in litters from paternal transmission, whereas contraction of CAG repeat in litters was observed through maternal transmission. Elderly mice show greater CAG repeat instability than younger mice, and a unique case was observed of an expanded 97 CAG repeat mouse. Somatic CAG repeat instability is particularly pronounced in the liver, kidney, stomach, and brain but not in the cerebellum of 100-week-old mice. The same results of expanded CAG repeat instability as observed in this HD model mouse were confirmed in the human brain of HD patients. Glial fibrillary acidic protein (GFAP)-positive cells have been found to be increased in the substantia nigra (SN), globus pallidus (GP), and striatum (St) in the brains of 40-week-old affected mice, although without neuronal cell death. The CAG repeat instability and increase in GFAP-positive cells in this mouse model appear to mirror the abnormalities in HD patients. The HD model mouse may therefore have advantages for investigations of molecular mechanisms underlying instability of CAG repeats. J. Neurosci. Res. 65:289,297, 2001. © 2001 Wiley-Liss, Inc. [source] The orally combined neuroprotective effects of sodium ferulate and borneol against transient global ischaemia in C57 BL/6J miceJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 7 2010Xiao-hong Chen Abstract Objectives, This study aimed to investigate the possible modification of the neuroprotective effect of sodium ferulate, when orally co-administered with borneol, in transient global cerebral ischaemia-induced functional, histological and cellular alterations in mice. Methods, The bilateral common carotid artery occlusion was conducted in C57 BL/6J mice for 25 min. The mice were then subjected to a water maze test over an extended recovery period, followed by an assessment of neuronal loss in the CA1 region of the hippocampus (haematoxylin and eosin staining). The blood,brain barrier permeability (Evans blue tracing), brain oedema and oxidative stress were assayed and histological sections were also immunostained for gliofibrillar acid protein (GFAP) expression. Key findings, The ischaemia reperfused mice were associated with long-lasting spatial learning deficits in the absence of other behavioural impairments and with neurodegeneration in the hippocampal CA1 region. However, the histological injuries were significantly attenuated by oral co-administration of sodium ferulate and borneol. Furthermore, combined treatment with sodium ferulate and borneol resulted in a significant reduction in brain oedema, GFAP-positive cells, malonaldialdehyde levels and blood,brain barrier permeability, but an increase in superoxide dismutase activity. Conclusions, Borneol may have benefits for the neuroprotective effect of sodium ferulate against injury induced in the brain by ischaemia/reperfusion. [source] Expression of N -methyl- D -aspartate (NMDA) and , -amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) GluR2/3 receptors in the developing rat pineal glandJOURNAL OF PINEAL RESEARCH, Issue 3 2005C. Kaur Abstract:, The expression of , -amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type glutamate (GluR2/3) receptors and N -methyl- d -aspartate receptor subtype 1 (NMDAR1) was carried out by immunohistochemistry, double immunofluorescence and real-time RT-PCR analysis in the pineal glands of 1-day to 6-wk-old rats in the present study. GluR2/3 immunopositive cells were distributed throughout the pineal gland and showed branching processes in all age groups. The NMDAR1 immunoreactivity, however, was observed in fewer branched cells. A constitutive mRNA expression of NMDAR1, GluR2 and GluR3 was detected in the pineal glands of various ages and showed no significant difference between the age groups studied. Immunohistochemical and double immunofluorescence results showed that the GluR2/3 were mainly expressed and co-localized with OX-42-positive microglia/macrophages and the glial fibrillary acidic protein (GFAP)-positive astrocytes. Co-localization of NMDAR1 with OX-42- and GFAP-positive cells was much less. The expression of these receptors on the glial cells suggests that they may be involved in the development and growth of the pineal gland in the early postnatal period (1 day to 3 wk) and subsequently in the regulation of melatonin synthesis. [source] |