GDNF

Distribution by Scientific Domains
Distribution within Life Sciences

Terms modified by GDNF

  • gdnf expression

  • Selected Abstracts


    Pre-activation of retinoid signaling facilitates neuronal differentiation of mesenchymal stem cells

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 5 2010
    Yang Bi
    Mesenchymal stem cells (MSCs) can differentiate into neurons in an appropriate cellular environment. Retinoid signaling pathway is required in neural development. However, the effect and mechanism through retinoid signaling regulates neuronal differentiation of MSCs are still poorly understood. Here, we report that all-trans-retinoic acid (ATRA) pre-induction improved neuronal differentiation of rat MSCs. We found that, when MSCs were exposed to different concentrations of ATRA (0.01,100 ,mol/L) for 24 h and then cultured with modified neuronal induction medium (MNM), 1 ,mol/L ATRA pre-induction significantly improved neuronal differentiation efficiency and neural-cell survival. Compared with MNM alone induced neural-like cells, ATRA/MNM induced cells expressed higher levels of Nestin, neuron specific enolase (NSE), microtubule-associated protein-2 (MAP-2), but lower levels of CD68, glial fibrillary acidic protein (GFAP), and glial cell line-derived neurotrophic factor(GDNF), also exhibited higher resting membrane potential and intracellular calcium concentration, supporting that ATRA pre-induction promotes maturation and function of derived neurons but not neuroglia cells from MSCs. Endogenous retinoid X receptors (RXR) RXR, and RXR, (and to a lesser extent, RXR,) were weakly expressed in MSCs. But the expression of RAR, and RAR, was readily detectable, whereas RAR, was undetectable. However, at 24 h after ATRA treatment, the expression of RAR,, not RAR, or RAR,, increased significantly. We further found the subnuclear redistribution of RAR, in differentiated neurons, suggesting that RAR, may function as a major mediator of retinoid signaling during neuronal differentiation from MSCs. ATRA treatment upregulated the expression of Vimentin and Stra13, while it downregulated the expression of Brachyury in MSCs. Thus, our results demonstrate that pre-activation of retinoid signaling by ATRA facilitates neuronal differentiation of MSCs. [source]


    Developmental changes in neurite outgrowth responses of dorsal root and sympathetic ganglia to GDNF, neurturin, and artemin

    DEVELOPMENTAL DYNAMICS, Issue 3 2003
    H. Yan
    Abstract The ability of glial cell line,derived neurotrophic factor (GDNF), neurturin, and artemin to induce neurite outgrowth from dorsal root, superior cervical, and lumbar sympathetic ganglia from mice at a variety of development stages between embryonic day (E) 11.5 and postnatal day (P) 7 was examined by explanting ganglia onto collagen gels and growing them in the presence of agarose beads impregnated with the different GDNF family ligands. Artemin, GDNF, and neurturin were all capable of influencing neurite outgrowth from dorsal root and sympathetic ganglia, but the responses of each neuron type to the different ligands varied during development. Neurites from dorsal root ganglia responded to artemin at P0 and P7, to GDNF at E15.5 and P0, and to neurturin at E15.5, P0, and P6/7; thus, artemin, GDNF, and neurturin are all capable of influencing neurite outgrowth from dorsal root ganglion neurons. Neurites from superior cervical sympathetic ganglia responded significantly to artemin at E15.5, to GDNF at E15.5 and P0, and to neurturin at E15.5. Neurites from lumbar sympathetic ganglia responded to artemin at all stages from E11.5 to P7, to GDNF at P0 and P7 and to neurturin at E11.5 to P6/7. Combined with the data from previous studies that have examined the expression of GDNF family members, our data suggest that artemin plays a role in inducing neurite outgrowth from young sympathetic neurons in the early stages of sympathetic axon pathfinding, whereas GDNF and neurturin are likely to be important at later stages of sympathetic neuron development in inducing axons to enter particular target tissues once they are in the vicinity or to induce branching within target tissues. Superior cervical and lumbar sympathetic ganglia showed temporal differences in their responsiveness to artemin, GDNF, and neurturin, which probably partly reflects the rostrocaudal development of sympathetic ganglia and the tissues they innervate. Developmental Dynamics 227:395,401, 2003. © 2003 Wiley-Liss, Inc. [source]


    Intrastriatal administration of human immunodeficiency virus-1 glycoprotein 120 reduces glial cell-line derived neurotrophic factor levels and causes apoptosis in the substantia nigra

    DEVELOPMENTAL NEUROBIOLOGY, Issue 12 2006
    Rachel L. Nosheny
    Abstract Uninfected neurons of the substantia nigra (SN) degenerate in human immunodeficiency virus (HIV)-positive patients through an unknown etiology. The HIV envelope glycoprotein 120 (gp120) causes apoptotic neuronal cell death in the rodent striatum, but its primary neurotoxic mechanism is still under investigation. Previous studies have shown that gp120 causes neurotoxicity in the rat striatum by reducing brain-derived neurotrophic factor (BDNF). Because glial cell line-derived neurotrophic factor (GDNF) and BDNF are neurotrophic factors crucial for the survival of dopaminergic neurons of the SN, we investigated whether gp120 reduces GDNF and BDNF levels concomitantly to induce apoptosis. Rats received a microinjection of gp120 or vehicle into the striatum and were sacrificed at various time intervals. GDNF but not BDNF immunoreactivity was decreased in the SN by 4 days in gp120-treated rats. In these animals, a significant increase in the number of caspase-3- positive neurons, both tyrosine hydroxylase (TH)-positive and -negative, was observed. Analysis of TH immunoreactivity revealed fewer TH-positive neurons and fibers in a medial and lateral portion of cell group A9 of the SN, an area that projects to the striatum, suggesting that gp120 induces retrograde degeneration of nigrostriatal neurons. We propose that dysfunction of the nigrostriatal dopaminergic system associated with HIV may be caused by a reduction of neurotrophic factor expression by gp120. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source]


    GDNF and insulin cooperate to enhance the proliferation and differentiation of enteric crest-derived cells

    DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2003
    Paul J. Focke
    Abstract Previously we have shown that glial derived neurotrophic factor (GDNF) stimulates modest increases in the proliferation of avian enteric crest-derived cells and similar increases in the phosphorylation of the phosphoinositide 3,kinase (PI3K) downstream substrate Akt (Akt-P). In the present study we tested whether GDNF-independent increases in PI3K activation would be sufficient to support proliferation. We found that insulin induces a large increase in the phosphorylation of Akt and can initiate DNA synthesis in avian enteric crest-derived cells, but is unable to maintain proliferation over time in culture, measured by BrdU incorporation. GDNF can also initiate DNA synthesis, but it too is unable to maintain BrdU incorporation in cultured enteric crest-derived cells. Sustained incorporation of BrdU after 16,48 h in culture is shown to be dependent on a combination of GDNF and insulin. Using a phospho-specific antibody, we found Akt-P levels to be similar in the proliferating (BrdU incorporation maintained from 16,48 h in culture) and nonproliferating populations, suggesting that Akt-P levels were not solely controlling the extent of BrdU incorporation. A minimum level of PI3K activation, however, is required, as shown by the dose-dependent reduction in proliferation with the PI3K inhibitor LY-294002. We conclude that the integrity of the PI3K pathway is essential for enteric crest-derived cell proliferation, but that the absolute levels of Akt-P do not determine the extent of proliferation. The enhanced proliferation in cultures containing both GDNF and insulin suggests that other pathways are involved, including the possibility that PI3K downstream effectors other than Akt are important in the regulation of avian enteric crest-derived cell proliferation. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 151,164, 2003 [source]


    Comparison of the effects of HGF, BDNF, CT-1, CNTF, and the branchial arches on the growth of embryonic cranial motor neurons

    DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2002
    Arifa Naeem
    Abstract In the developing embryo, axon growth and guidance depend on cues that include diffusible molecules. We have shown previously that the branchial arches and hepatocyte growth factor (HGF) are growth-promoting and chemoattractant for young embryonic cranial motor axons. HGF is produced in the branchial arches of the embryo, but a number of lines of evidence suggest that HGF is unlikely to be the only factor involved in the growth and guidance of these axons. Here we investigate whether other neurotrophic factors could be involved in the growth of young cranial motor neurons in explant cultures. We find that brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and cardiotrophin-1 (CT-1) all promote the outgrowth of embryonic cranial motor neurons, while glial cell line-derived neurotrophic factor (GDNF) and neurotrophin-3 (NT-3) fail to affect outgrowth. We next examined whether HGF and the branchial arches had similar effects on motor neuron subpopulations at different axial levels. Our results show that HGF acts as a generalized rather than a specific neurotrophic factor and guidance cue for cranial motor neurons. Although the branchial arches also had general growth-promoting effects on all motor neuron subpopulations, they chemoattracted different axial levels differentially, with motor neurons from the caudal hindbrain showing the most striking response. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 101,114, 2002 [source]


    GDNF hyperalgesia is mediated by PLC,, MAPK/ERK, PI3K, CDK5 and Src family kinase signaling and dependent on the IB4-binding protein versican

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2008
    Oliver Bogen
    Abstract The function of the isolectin B4 (IB4+)-binding and GDNF-dependent Ret (Ret+)-expressing non-peptidergic subpopulation of nociceptors remain poorly understood. We demonstrate that acute administration of GDNF sensitizes nociceptors and produces mechanical hyperalgesia in the rat. Intrathecal IB4,saporin, a selective toxin for IB4+/Ret+ -nociceptors, attenuates GDNF but not NGF hyperalgesia. Conversely, intrathecal antisense to Trk A attenuated NGF but not GDNF hyperalgesia. Intrathecal administration of antisense oligodeoxynucleotides targeting mRNA for versican, the molecule that renders the Ret-expressing nociceptors IB4-positive (+), also attenuated GDNF but not NGF hyperalgesia, as did ADAMTS-4, a matrix metalloprotease known to degrade versican. Finally, inhibitors for all five signaling pathways known to be activated by GDNF at GFR,1/Ret: PLC,, CDK5, PI3K, MAPK/ERK and Src family kinases, attenuated GDNF hyperalgesia. Our results demonstrate a role of the non-peptidergic nociceptors in pain produced by the neurotrophin GDNF and suggest that the IB4-binding protein versican functions in the expression of this phenotype. [source]


    Impaired behavioural flexibility and memory in mice lacking GDNF family receptor ,2

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2004
    Vootele Võikar
    Abstract The glial cell line-derived neurotrophic factor (GDNF) family receptor GFR,2 is the binding receptor for neurturin (NRTN). The main biological responses of GFR,2 are mediated via the Ret receptor tyrosine kinase, although it may also signal independently of Ret via the neural cell adhesion molecule NCAM. GFR,2 is expressed in many neurons of both the central and peripheral nervous system. Mice lacking GFR,2 receptors do not exhibit any gross defects in the central nervous system structure. However, they display profound deficits in the parasympathetic and enteric nervous system, accompanied by significant reduction in body weight after weaning. Here we present the results of behavioural analysis of the GFR,2-knockout mice. The knockout mice did not differ from wild-type mice in basic tests of motor and exploratory activity. However, differences were established in several memory tasks. The knockout mice were not impaired in the acquisition of spatial escape strategy. However, the deficit in flexibility in establishing a new strategy was revealed during reversal learning with the platform in the opposite quadrant of the pool. Furthermore, the knockout mice displayed significant impairment in contextual fear conditioning and conditioned taste aversion tests of memory. The results suggest that GFR,2 signalling plays a role in the development or maintenance of cognitive abilities that help in solving complex learning tasks. [source]


    NGF and GDNF ameliorate the increase in ATF3 expression which occurs in dorsal root ganglion cells in response to peripheral nerve injury

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2004
    Sharon Averill
    Abstract Activating transcription factor-3 (ATF3) is a member of the ATF/CREB transcription factor superfamily and is induced in dorsal root ganglion (DRG) cells after nerve injury. In order to study the regulation of ATF3, we have examined the effect of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) on ATF3 expression. In untreated rats, sciatic nerve transection induced ATF3 immunoreactivity in 82% of L4 DRG cells at 14 days after axotomy. Intrathecal delivery of NGF or GDNF for 2 weeks commencing immediately after injury reduced the ATF3 expression to 35 and 23% of DRG cells, respectively. Cell size analysis indicated that NGF had protected a population of mainly small- to medium-sized cells, but that the GDNF had protected a population of both small and large cells. This effect was confirmed by double labelling for P2X3, CGRP and 200 kDa neurofilament, markers for small peptide-poor cells, peptide-rich cells and large cells, respectively. Thus GDNF reduced the percentage of ATF3-immunoreactive P2X3 cells from 70 to 4%, and the percentage of ATF3-immunoreactive neurofilament cells from 63 to 24%. NGF was less effective than GDNF in reducing ATF3 expression in these cell types, but reduced the percentage of ATF3-immunoreactive CGRP cells from 10% to <,1%. These results show that ATF3 expression in specific populations of DRG cells can be modulated by exogenous supplementation of specific trophic factors, and suggest that ATF3 expression may normally be induced by the loss of target-derived NGF and GDNF. [source]


    Impaired water maze learning performance without altered dopaminergic function in mice heterozygous for the GDNF mutation

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2001
    R. Gerlai
    Abstract Exogenous glial cell line-derived neurotrophic factor (GDNF) exhibits potent survival-promoting effects on dopaminergic neurons of the nigrostriatal pathway that is implicated in Parkinson's disease and also protects neurons in forebrain ischemia of animal models. However, a role for endogenous GDNF in brain function has not been established. Although mice homozygous for a targeted deletion of the GDNF gene have been generated, these mice die within hours of birth because of deficits in kidney morphogenesis, and, thus, the effect of the absence of GDNF on brain function could not be studied. Herein, we sought to determine whether adult mice, heterozygous for a GDNF mutation on two different genetic backgrounds, demonstrate alterations in the nigrostriatal dopaminergic system or in cognitive function. While both neurochemical and behavioural measures suggested that reduction of GDNF gene expression in the mutant mice does not alter the nigrostriatal dopaminergic system, it led to a significant and selective impairment of performance in the spatial version of the Morris water maze. A standard panel of blood chemistry tests and basic pathological analyses did not reveal alterations in the mutants that could account for the observed performance deficit. These results suggest that endogenous GDNF may not be critical for the development and functioning of the nigrostriatal dopaminergic system but it plays an important role in cognitive abilities. [source]


    Inhibition of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression reduces dopaminergic sprouting in the injured striatum

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2000
    P. E. Batchelor
    Abstract After striatal injury, sprouting dopaminergic fibres grow towards and intimately surround wound macrophages which, together with microglia, express the dopaminergic neurotrophic factors glial cell line-derived neurotrophic factor (GDNF) and brain derived neurotrophic factor (BDNF). To evaluate the importance of these endogenously secreted neurotrophic factors in generating striatal peri-wound dopaminergic sprouting, the peri-wound expression of BDNF or GDNF was inhibited by intrastriatal infusion of antisense oligonucleotides for 2 weeks in mice. Knock-down of both BDNF and GDNF mRNA and protein levels in the wounded striatum were confirmed by in situ hybridization and enzyme-linked immunosorbent assay, respectively. Dopamine transporter immunohisto-chemistry revealed that inhibition of either BDNF or GDNF expression resulted in a marked decrease in the intensity of peri-wound sprouting. Quantification of this effect using [H3]-mazindol autoradiography confirmed that peri-wound sprouting was significantly reduced in mice receiving BDNF or GDNF antisense infusions whilst control infusions of buffered saline or sense oligonucleotides resulted in the pronounced peri-wound sprouting response normally associated with striatal injury. BDNF and GDNF thus appear to be important neurotrophic factors inducing dopaminergic sprouting after striatal injury. [source]


    GDNF enhances the synaptic efficacy of dopaminergic neurons in culture

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2000
    Marie-Josée Bourque
    Abstract Glial cell line-derived neurotrophic factor (GDNF) is known to promote the survival and differentiation of dopaminergic neurons of the midbrain. GDNF also causes an enhancement of dopamine release by a mechanism which is presently unclear. Using isolated dopaminergic neurons of the rat ventral tegmental area in culture, we have tested the hypothesis that GDNF regulates the establishment and functional properties of synaptic terminals. Previous studies have shown that single dopaminergic neurons in culture can co-release glutamate in addition to dopamine, leading to the generation of a fast excitatory autaptic current via glutamate receptors. Using excitatory autaptic currents as an assay for the activity of synapses established by identified dopaminergic neurons, we found that chronically applied GDNF produced a threefold increase in the amplitude of excitatory autaptic currents. This action was specific for dopaminergic neurons because GDNF had no such effect on ventral tegmental area GABAergic neurons. The enhancement of excitatory autaptic current amplitude caused by GDNF was accompanied by an increase in the frequency of spontaneous miniature excitatory autaptic currents. These observations confirmed a presynaptic locus of change. We identified synaptic terminals by using synapsin-1 immunofluorescence. In single tyrosine hydroxylase-positive neurons, the number of synapsin-positive puncta which represent putative synaptic terminals was found to be approximately doubled in GDNF-treated cells at 5, 10 and 15 days in culture. The number of such morphologically identified terminals in isolated GABAergic neurons was unchanged by GDNF. These results suggest that one mechanism through which GDNF may enhance dopamine release is through promoting the establishment of new functional synaptic terminals. [source]


    Dedifferentiation of intrinsic response properties of motoneurons in organotypic cultures of the spinal cord of the adult turtle

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2000
    Jean-François Perrier
    Abstract Explant cultures from the spinal cord of adult turtles were established and used to study the sensitivity of the intrinsic response properties of motoneurons to the changes in connectivity and milieu imposed by isolation in culture. Transverse sections 700 ,m thick were explanted on cover slips and maintained in roller-tube cultures in medium containing serum and the growth factors brain-derived neurotrophin factor (BDNF), neurotrophin-3 (NT3), glial cell line-derived neurotrophic factor (GDNF) and ciliary neurotrophic factor (CNTF). The gross morphology of acute sections was maintained after 4 weeks in culture. Cell bodies of motoneurons remained stainable in fixed cultures with an antibody against choline acetyltransferase (ChAT) throughout the culture period. During culture, motoneurons maintained stable resting membrane potentials and were contacted by functional synapses. The ability to generate action potentials was also preserved as was delayed inward rectification and generation of calcium spikes in the presence of tetra-ethyl ammonium (TEA). In response to depolarization, however, motoneurons presented strong outward rectification, and only 41% of the cells recorded from maintained the ability to fire repetitively. By the second week in culture, a fraction of motoneurons displayed fast and slow transient outward rectification and low-threshold calcium spikes, features not seen in turtle motoneurons in acute slices. On the other hand, properties mediated by L-type Ca2+ channels disappeared during the first few days in culture. Our observations show that the phenotypical intrinsic response properties of mature spinal motoneurons are modified in explant cultures. The properties acquired resemble the properties in juvenile motoneurons in several species of terrestrial vertebrates. [source]


    Regulation of GluR2 promoter activity by neurotrophic factors via a neuron-restrictive silencer element

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2000
    Stefan Brené
    Abstract The AMPA glutamate receptor subunit GluR2, which plays a critical role in regulation of AMPA channel function, shows altered levels of expression in vivo after several chronic perturbations. To evaluate the possibility that transcriptional mechanisms are involved, we studied a 1254-nucleotide fragment of the 5,-promoter region of the mouse GluR2 gene in neural-derived cell lines. We focused on regulation of GluR2 promoter activity by two neurotrophic factors, which are known to be altered in vivo in some of the same systems that show GluR2 regulation. Glial-cell line derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) both induced GluR2 promoter activity. This was associated with increased expression of endogenous GluR2 immunoreactivity in the cells as measured by Western blotting. The effect of GDNF and BDNF appeared to be mediated via a NRSE (neuron-restrictive silencer element) present within the GluR2 promoter. The response to these neurotrophic factors was lost upon mutating or deleting this site, but not several other putative response elements present within the promoter. Moreover, overexpression of REST (restrictive element silencer transcription factor; also referred to as NRSF or neuron restrictive silencer factor), which is known to act on NRSEs in other genes to repress gene expression, blocked the ability of GDNF to induce GluR2 promoter activity. However, GDNF did not alter endogenous levels of REST in the cells. Together, these findings suggest that GluR2 expression can be regulated by neurotrophic factors via an apparently novel mechanism involving the NRSE present within the GluR2 gene promoter. [source]


    Novel Magnetic Hydroxyapatite Nanoparticles as Non-Viral Vectors for the Glial Cell Line-Derived Neurotrophic Factor Gene

    ADVANCED FUNCTIONAL MATERIALS, Issue 1 2010
    Hsi-Chin Wu
    Abstract Nanoparticles (NPs) of synthetic hydroxyapatite (Hap) and natural bone mineral (NBM) are rendered magnetic by treatment with iron ions using a wet-chemical process. The magnetic NPs (mNPs), which are about 300,nm in diameter, display superparamagnetic properties in a superconducting quantum interference device, with a saturation magnetization of about 30,emu g,1. X-ray diffraction and transmission electron microscopy reveal that the magnetic properties of the NPs are the result of the hetero-epitaxial growth of magnetite on the Hap and NBM crystallites. The mNPs display a high binding affinity for plasmid DNA in contrast to magnetite NPs which do not bind the plasmid well. The mHap and mNBM NPs result in substantial increases in the transfection of rat marrow-derived mesenchymal stem cells with the gene for glial cell line-derived neurotrophic factor (GDNF), with magnetofection compared to transfection in the absence of a magnet. The amount of GDNF recovered in the medium approaches therapeutic levels despite the small amount of plasmid delivered by the NPs. [source]


    Hypoxia-activated microglial mediators of neuronal survival are differentially regulated by tetracyclines

    GLIA, Issue 8 2006
    Aaron Y. Lai
    Abstract The tetracycline derivatives minocycline (MINO) and doxycycline (DOXY) have been shown to be neuroprotective in in vivo and in vitro models of stroke. This neuroprotection is thought to be due to the suppression of microglial activation. However, the specific molecular parameters in microglia of the tetracyclines' effect are not understood. We subjected cultured rat microglial and neuronal cells to in vitro hypoxia and examined the effects of MINO and DOXY pre-treatments. Our data showed that MINO and DOXY protect against hypoxia-induced neuronal death by a mechanism dependent on regulation of microglial factors, but likely unrelated to regulation of microglial proliferation/viability. Both MINO and DOXY suppressed the hypoxic activation of ED-1, a marker for microglial activation. Morphological analyses of hypoxic microglia using the microglial marker Iba1 revealed that treatment with MINO and DOXY caused a higher percentage of microglia to remain in a non-activated state. MINO suppressed the hypoxic upregulation of pro-inflammatory agents nitric oxide (NO), interleukin-1 beta (IL-1,), and tumor necrosis factor alpha (TNF-,), while DOXY down-regulated only NO and IL-1,. In contrast, the hypoxic activation of pro-survival/neuroprotective microglial proteins, such as brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF), were unaffected by tetracycline treatments. Taken together, these results suggest that MINO and DOXY may provide neuroprotection against stroke by selectively down-regulating microglial toxic factors while maintaining functional pro-survival factors. © 2006 Wiley-Liss, Inc. [source]


    Increased expression of glial cell line-derived neurotrophic factor protects against oxidative damage-induced retinal degeneration

    JOURNAL OF NEUROCHEMISTRY, Issue 3 2007
    Aling Dong
    Abstract Oxidative damage contributes to retinal cell death in patients with age-related macular degeneration or retinitis pigmentosa. One approach to treatment is to identify and eliminate the sources of oxidative damage. Another approach is to identify treatments that protect cells from multiple sources of oxidative damage. In this study, we investigated the effect of increased expression of glial cell line-derived neurotrophic factor (GDNF) in three models of oxidative damage-induced retinal degeneration. Double transgenic mice with doxycycline-inducible expression of GDNF in the retina were exposed to paraquat, FeSO4, or hyperoxia, all sources of oxidative damage and retinal cell death. Compared to controls, mice with increased expression of GDNF in the retina showed significant preservation of retinal function measured by electroretinograms, reduced thinning of retinal cell layers, and fewer TUNEL-positive cells indicating less retinal cell death. Mice over-expressing GDNF also showed less staining for acrolein, nitrotyrosine, and 8-hydroxydeoxyguanosine, indicating less oxidative damage to lipids, proteins, and DNA. This suggests that GDNF did not act solely to allow cells to tolerate higher levels of oxidative damage before initiation of apoptosis, but also reduced damage from oxidative stress to critical macromolecules. These data suggest that gene transfer of Gdnf should be considered as a component of therapy for retinal degenerations in which oxidative damage plays a role. [source]


    Novel targets for valproic acid: up-regulation of melatonin receptors and neurotrophic factors in C6 glioma cells

    JOURNAL OF NEUROCHEMISTRY, Issue 5 2005
    Lyda M. Rincón Castro
    Abstract Valproic acid (VPA) is a potent anti-epileptic and effective mood stabilizer. It is known that VPA enhances central GABAergic activity and activates the mitogen-activated protein kinase,extracellular signal-regulated kinase (MAPK,ERK) pathway. It can also inhibit various isoforms of the enzyme, histone deacetylase (HDAC), which is associated with modulation of gene transcription. Recent in vivo studies indicate a neuroprotective role for VPA, which has been found to up-regulate the expression of brain-derived neurotrophic factor (BDNF) in the rat brain. Given the interaction between the pineal hormone, melatonin, and GABAergic systems in the central nervous system, the effects of VPA on the expression of the mammalian melatonin receptor subtypes, MT1 and MT2, were examined in rat C6 glioma cells. The effects of VPA on the expression of glial cell line-derived neurotrophic factor (GDNF) and BDNF were also examined. RT-PCR studies revealed a significant induction of melatonin MT1 receptor mRNA in C6 cells following treatment with 3 or 5 mm VPA for 24 h or 5 mm VPA for 48 h. Western analysis and immunocytochemical detection confirmed that the VPA-induced increase in MT1 mRNA results in up-regulation of MT1 protein expression. Blockade of the MAPK,ERK pathway by PD98059 enhanced the effect of VPA on MT1 expression, suggesting a negative role for this pathway in MT1 receptor regulation. In addition, significant increases in BDNF, GDNF and HDAC mRNA expression were observed after treatment with VPA for 24 or 48 h. Taken together, the present findings suggest that the neuroprotective properties of VPA involve modulation of neurotrophic factors and receptors for melatonin, which is also thought to play a role in neuroprotection. Moreover, the foregoing suggests that combinations of VPA and melatonin could provide novel therapeutic strategies in neurological and psychiatric disorders. [source]


    Trophic factors attenuate nitric oxide mediated neuronal and axonal injury in vitro: roles and interactions of mitogen-activated protein kinase signalling pathways

    JOURNAL OF NEUROCHEMISTRY, Issue 6 2005
    Alastair Wilkins
    Abstract Inflammation in the central nervous system occurs in diseases such as multiple sclerosis and leads to axon dysfunction and destruction. Both in vitro and in vivo observations have suggested an important role for nitric oxide (NO) in mediating inflammatory axonopathy. The purposes of this study were to model inflammatory axonopathy in vitro and identify modulators of the process. Rat cortical neurones were cultured and exposed to an NO-donor plus potential protective factors. Cultures were then assessed for neuronal survival, axon survival and markers of intracellular signalling pathways. The NO-donor produced dose-dependent neuronal loss and a large degree of axon destruction. Oligodendrocyte conditioned medium (OCM) and insulin-like growth factor type-1 (IGF-1), but not glial cell line-derived neurotrophic factor (GDNF), improved survival of neurones exposed to NO donors. In addition p38 MAP kinase was activated by NO exposure and inhibition of p38 signalling led to neuronal and axonal survival effects. OCM and IGF-1 (but not GDNF) reduced p38 activation in NO-exposed cortical neurones. OCM, IGF-1 and GDNF improved axon survival in cultures exposed to NO, a process dependent on mitogen-activated protein kinase/extracellular signal-related kinase signalling. This study emphasizes that different mechanisms may underlie neuronal/axonal destructive processes, and suggests that trophic factors may modulate NO-mediated neurone/axon destruction via specific pathways. [source]


    Gene therapy approaches for Parkinson's disease

    JOURNAL OF NEUROCHEMISTRY, Issue 2003
    P. Aebischer
    The CNS delivery of glial cell line-derived neurotrophic factor (GDNF) for the treatment of Parkinson's disease constitutes one of the more promising clinical applications of neurotrophic factors. Crucial for clinical application will be the ability to deliver GDNF within the target structures, i.e. striatum and/or substantia nigra. We are developing both in vivo and ex vivo gene therapy approaches to reach this goal. We have shown in rodents that both lentiviral vectors coding for GDNF and polymer encapsulated cells genetically engineered to release GDNF are able to protect nigral dopaminergic neurons against various insults including axotomy and neurotoxins such as 6-hydroxydopamine. Even more important for clinical application is the ability to scale-up the technology to nonhuman primate application. Neurorestorative and/or neuroprotective properties of GDNF expression were demonstrated with both methods in various nonhuman primate models. [source]


    Neuroprotective effects of prior limb use in 6-hydroxydopamine-treated rats: possible role of GDNF

    JOURNAL OF NEUROCHEMISTRY, Issue 2 2003
    Ann D. Cohen
    Abstract Unilateral administration of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle (MFB) causes a loss of dopamine (DA) in the ipsilateral striatum and contralateral motor deficits. However, if a cast is placed on the ipsilateral limb during the first 7 days following 6-OHDA infusion, forcing the animal to use its contralateral limb, both the behavioral and neurochemical deficits are reduced. Here, we examine the effect of forced reliance on a forelimb during the 7 days prior to ipsilateral infusion of 6-OHDA on the deficits characteristic of this lesion model. Casted animals displayed no behavioral asymmetries as measured 14,28 days postlesion and a marked attenuation in the loss of striatal DA and its metabolites at 30 days. In addition, animals receiving a unilateral cast alone had an increase in glial cell-line derived neurotrophic factor (GDNF) protein in the striatum corresponding to the overused limb. GDNF increased within 1 day after the onset of casting, peaked at 3 days, and returned to baseline within 7 days. These results suggest that preinjury forced limb-use can prevent the behavioral and neurochemical deficits to the subsequent administration of 6-OHDA and that this may be due in part to neuroprotective effects of GDNF. [source]


    Antiapoptotic and antiautophagic effects of glial cell line-derived neurotrophic factor and hepatocyte growth factor after transient middle cerebral artery occlusion in rats

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 10 2010
    Jingwei Shang
    Abstract Glial cell line-derived neurotrophic factor (GDNF) and hepatocyte growth factor (HGF) are strong neurotrophic factors, which function as antiapoptotic factors. However, the neuroprotective effect of GDNF and HGF in ameliorating ischemic brain injury via an antiautophagic effect has not been examined. Therefore, we investigated GDNF and HGF for changes of infarct size and antiapoptotic and antiautophagic effects after transient middle cerebral artery occlusion (tMCAO) in rats. For the estimation of ischemic brain injury, the infarct size was calculated at 24 hr after tMCAO by HE staining. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ nick end labeling (TUNEL) was performed for evaluating the antiapoptotic effect. Western blot analysis of microtubule-associated protein 1 light chain 3 (LC3) and immunofluorescence analysis of LC3 and phosphorylated mTOR/Ser2448 (p-mTOR) were performed for evaluating the antiautophagic effect. GDNF and HGF significantly reduced infarct size after cerebral ischemia. The amounts of LC3-I plus LC3-II (relative to ,-tubulin) were significantly increased after tMCAO, and GDNF and HGF significantly decreased them. GDNF and HGF significantly increased p-mTOR-positive cells. GDNF and HGF significantly decreased the numbers of TUNEL-, LC3-, and LC3/TUNEL double-positive cells. LC3/TUNEL double-positive cells accounted for about 34.3% of LC3 plus TUNEL-positive cells. This study suggests that the protective effects of GDNF and HGF were greatly associated with not only the antiapoptotic but also the antiautophagic effects; maybe two types of cell death can occur in the same cell at the same time, and GDNF and HGF are capable of ameliorating these two pathways. © 2010 Wiley-Liss, Inc. [source]


    Glial cell line-derived neurotrophic factor protects astrocytes from staurosporine- and ischemia- induced apoptosis

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 15 2007
    Albert Cheung Hoi Yu
    Abstract Glial cell line-derived neurotrophic factor (GDNF) promotes the survival and functions of neurons. It has been shown to be a promising candidate in the treatment of ischemia and other neurodegenerative diseases. We transfected mouse astrocytes in primary cultures with a human GDNF gene and found that their conditioned medium could not only support the growth and survival of cultured dopaminergic neurons but also protect astrocytes from staurosporine- and ischemia-induced apoptosis. This indicated that these transfected astrocytes could release GDNF. A similar protective effect on astrocytes against apoptosis was evident when recombinant human GDNF was used. Moreover, GDNF reduced caspase-3 activity but not that of caspase-1 in cultured astrocytes after ischemia treatment. Thus, GDNF protects astrocytes from apoptosis by inhibiting the activation of caspase-3. © 2007 Wiley-Liss, Inc. [source]


    Differential effects of growth/differentiation factor 5 and glial cell line-derived neurotrophic factor on dopaminergic neurons and astroglia in cultures of embryonic rat midbrain

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2005
    Terri K. Wood
    Abstract Parkinson's disease is characterized by the progressive degeneration of midbrain dopaminergic neurons. Several studies have examined the effects of the dopaminergic neurotrophins growth/differentiation factor 5 (GDF5) and glial cell line-derived neurotrophic factor (GDNF) on these neurons in vitro. However, there is little information regarding their effects on astroglial cells. Here, the effects of GDF5 and GDNF on dopaminergic neuronal and astroglial survival and differentiation in embryonic rat midbrain cultures were examined. Both GDF5 and GDNF enhanced the survival and differentiation of dopaminergic neurons. GDF5 significantly increased the survival of astroglial cells, whereas GDNF had no significant effect on these cells. The possible involvement of astroglia in the dopaminergic neurotrophic effect induced by GDF5 was investigated by examining the effect of GDF5 on the survival of dopaminergic neurons in glia-depleted midbrain cultures. There was no significant difference between the survival of dopaminergic neurons in glia-depleted cultures treated with GDF5 and that in mixed cell cultures treated with GDF5, suggesting that GDF5 acts directly on dopaminergic neurons in exerting its neurotrophic effect. GDF5 and GDNF have been established as potent neurotrophic factors for dopaminergic neurons. However, the effects of adding a combination of these neurotrophins to midbrain cultures have not been previously examined. The present study found that combined treatment with GDF5 and GDNF significantly increased the survival of dopaminergic neurons in cultures compared with that in cultures treated with either neurotrophin alone. This was an additive effect, indicating that these neurotrophins act on separate subpopulations of dopaminergic neurons. © 2005 Wiley-Liss, Inc. [source]


    GDNF is an Endogenous Negative Regulator of Ethanol-Mediated Reward and of Ethanol Consumption After a Period of Abstinence

    ALCOHOLISM, Issue 6 2009
    Sebastien Carnicella
    Background:, We previously found that activation of the glial cell line-derived neurotrophic factor (GDNF) pathway in the ventral tegmental area (VTA) reduces ethanol-drinking behaviors. In this study, we set out to assess the contribution of endogenous GDNF or its receptor GFR,1 to the regulation of ethanol-related behaviors. Methods:, GDNF and GFR,1 heterozygote mice (HET) and their wild-type littermate controls (WT) were used for the studies. Ethanol-induced hyperlocomotion, sensitization, and conditioned place preference (CPP), as well as ethanol consumption before and after a period of abstinence were evaluated. Blood ethanol concentration (BEC) was also measured. Results:, We observed no differences between the GDNF HET and WT mice in the level of locomotor activity or in sensitization to ethanol-induced hyperlocomotion after systemic injection of a nonhypnotic dose of ethanol and in BEC. However, GDNF and GFR,1 mice exhibited increased place preference to ethanol as compared with their WT littermates. The levels of voluntary ethanol or quinine consumption were similar in the GDNF HET and WT mice, however, a small but significant increase in saccharin intake was observed in the GDNF HET mice. No changes were detected in voluntary ethanol, saccharin or quinine consumption of GFR,1 HET mice as compared with their WT littermates. Interestingly, however, both the GDNF and GFR,1 HET mice consumed much larger quantities of ethanol after a period of abstinence from ethanol as compared with their WT littermates. Furthermore, the increase in ethanol consumption after abstinence was found to be specific for ethanol as similar levels of saccharin intake were measured in the GDNF and GFR,1 HET and WT mice after abstinence. Conclusions:, Our results suggest that endogenous GDNF negatively regulates the rewarding effect of ethanol and ethanol-drinking behaviors after a period of abstinence. [source]


    Effects of age and GDNF on noradrenergic innervation of the hippocampal formation: Studies from intraocular grafts

    MICROSCOPY RESEARCH AND TECHNIQUE, Issue 5 2001
    A.-C. Granholm
    Abstract Recent studies have suggested that factors in the target tissue influence the degree of plasticity and regeneration following aging and/or specific insults. We have investigated whether young or aged targets differ in their noradrenergic innervation from fetal locus coeruleus (LC) neurons, and also if a specific growth factor, glial cell line-derived neurotrophic factor (GDNF) can affect this innervation pattern. Tissue pieces of fetal brainstem and young (3 months) or old (18 months) iris tissue were transplanted simultaneously into the anterior chamber of the eye of adult hosts. We found that aged iris transplants became innervated to a significantly lesser degree by the cografted LC neurons than young iris transplants. Fetal hippocampal tissue was then grafted to adult hosts, and a fetal brainstem graft containing LC neurons was placed adjacent to the first graft, either at 3 or 21 months post-grafting. Thus, old/young chimeras of the noradrenergic coeruleo-hippocampal pathway were created. Aged hippocampal grafts received a much less dense innervation from co-grafted LC neurons than young hippocampal grafts. Tyrosine hydroxylase-positive-immunoreactive innervation was only found in the outskirts of aged grafts, while the young hippocampal grafts contained an even innervation pattern. The innervation density of hippocampal grafts was significantly enhanced by GDNF treatment. These findings demonstrate that target-derived factors may regulate neuronal plasticity, and that the age of the target is more important for innervation properties than the age of the neuron innervating a particular target. Microsc. Res. Tech. 54:298,308, 2001. © 2001 Wiley-Liss, Inc. [source]


    Crossroads in GDNF therapy for Parkinson's disease

    MOVEMENT DISORDERS, Issue 2 2006
    Todd B. Sherer PhD
    Abstract The development of a neuroprotective or neuroregenerative therapy for Parkinson's disease (PD) would be a major therapeutic advance. Unfortunately, results from a recent controlled clinical study delivering the neurotrophic factor, glial-derived neurotrophic factor (GDNF), directly into brain did not demonstrate efficacy and safety of such a treatment. A critical review of available data suggests that there are questions that need to be answered before the future of GDNF as a therapy for PD can be determined. © 2006 Movement Disorder Society [source]


    Augmentation of the ascending component of the peristaltic reflex and substance P release by glial cell line-derived neurotrophic factor

    NEUROGASTROENTEROLOGY & MOTILITY, Issue 7 2010
    J. R. Grider
    Abstract Background, Glial cell line-derived neurotrophic factor (GDNF) is present in adult gut although its role in the mature enteric nervous system is not well defined. The aim of the present study was to examine the role of GDNF as neuromodulator of the ascending phase of the peristaltic reflex. Methods, Colonic segments were prepared as flat sheets and placed in compartmented chambers so as to separate the sensory and motor limbs of the reflex. Ascending contraction was measured in the orad compartment and mucosal stroking stimuli (two to eight strokes) were applied in the caudad compartment. GDNF and substance P (SP) release were measured and the effects of GDNF and GDNF antibody on contraction and release were determined. Mice with reduced levels of GDNF (Gdnf+/,) and wild type littermates were also examined. Key Results, GDNF was released in a stimulus-dependent manner into the orad motor but not caudad sensory compartment. Addition of GDNF to the orad motor but not caudad sensory compartment augmented ascending contraction and SP release. Conversely, addition of GDNF antibody to the orad motor but not caudad sensory compartment reduced ascending contraction and SP release. Similarly, the ascending contraction and SP release into the orad motor compartment was reduced in Gdnf+/, mice as compared to wild type littermates. Conclusions & Inferences, The results suggest that endogenous GDNF is released during the ascending contraction component of the peristaltic reflex where it acts as a neuromodulator to augment SP release from motor neurons thereby augmenting contraction of circular muscle orad to the site of stimulation. [source]


    Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord

    NEUROPATHOLOGY, Issue 3 2010
    Weidong Gu
    It has been demonstrated that transplantation of bone marrow mesenchymal stem cells (BMSCs) improves recovery of injured spinal cord in animal models. However, the mechanism of how BMSCs promote repair of injured spinal cord remains under investigation. The present study investigated the neural differentiation of BMSCs, the lesion volume and axonal regrowth of injured spinal cord after transplantation. Seven days after spinal cord injury, 3 × 105 BMSCs or PBS (control) was delivered into the injury epicenter of the spinal cord. At 8 weeks after spinal cord injury, transplantation of BMSCs reduced the volume of cavity and increased spared white matter as compared to the control. BMSCs did not express the cell marker of neurons, astrocytes and oligodendrocytes in injured spinal cord. Transmission electron microscopic examination displayed an increase in the number of axons in BMSC rats. The effect of BMSCs on growth of neuronal process was further investigated by using a coculture system. The length and the number of neurites from spinal neurons significantly increased when they cocultured with BMSCs. PCR and immunochemical analysis showed that BMSCs expressed brain-derived neurotrophic factor (BDNF) and glia cell line-derived neurotrophic factor (GDNF). These findings demonstrate that transplantation of BMSCs reduces lesion volume and promotes axonal regrowth of injured spinal cord. [source]


    Ubiquitin C-terminal hydrolase-L1 (PGP9.5) expression in human neural cell lines following induction of neuronal differentiation and exposure to cytokines, neurotrophic factors or heat stress

    NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 2 2001
    J.-I. Satoh
    Dysfunction of the ubiquitin-dependent proteolytic pathway contributes to progressive accumulation of ubiquitinated protein inclusions in neurodegenerative disorders, such as Parkinson's disease (PD). Ubiquitin C-terminal hydrolase-L1 (UCH-L1), alternatively designated protein gene product 9.5 (PGP9.5), is a neural deubiquitinating enzyme which is identified as a principal constituent of Lewy bodies. To clarify the regulatory mechanism of UCH-L1 expression in human neural cells, we studied the constitutive, cytokine/neurotrophic factor-regulated, and heat stress-induced expression of UCH-L1 in cultured human neural cell lines by Western blot analysis. The constitutive expression of UCH-L1 was identified in SK-N-SH neuroblastoma cells, IMR-32 neuroblastoma cells, U-373MG astrocytoma cells, and NTera2 teratocarcinoma-derived differentiated neurones (NTera2-N). The levels of UCH-L1 expression were unaltered in these cell lines following treatment with TNF-,, IL-1,, BDNF, GDNF, dibutyryl cyclic AMP, or phorbol 12-myristate 13-acetate, and remained unchanged by exposure to heat stress. In contrast, its levels were elevated substantially in NTera2 teratocarcinoma cells following retinoic acid-induced neuronal differentiation, accompanied with an increased expression of ,-synuclein and synaptophysin. These results indicate that UCH-L1 is expressed constitutively in human neual cell lines, where it is upregulated following induction of neuronal differentiation, but unaffected by exposure to heat stress, cytokines, or growth/differentiation factors which are supposed to be invloved in the nigral neuronal death and survival in PD. [source]


    Developmental expression of glial cell-line derived neurotrophic factor, neurturin, and their receptor mRNA in the rat urinary bladder

    NEUROUROLOGY AND URODYNAMICS, Issue 1 2003
    Takahiro Kawakami
    Abstract Aims: Glial cell-line derived neurotrophic factor (GDNF) and related factors neurturin (NRTN), artemin, and persephin are members of the GDNF family of neurotrophic factors. GDNF and NRTN bind to the tyrosine kinase receptor Ret and the receptors GFR,1 and GFR,2. The objective was to examine the developmental expression of GDNF, NRTN, and their receptors within the rat urinary bladder. Methods: Rat bladders dissected from embryonic day (E) 15, postnatal day (P) 0, P14, P28, and adult rats (P60) were investigated by semiquantitative reverse transcriptase polymerase chain reaction. Embryos (E15, E16, and E17) were immunohistochemically stained for neurofilament. Results: GDNF and Ret mRNA levels at E15 were the highest of all the stages we examined and then immediately decreased. In contrast, NRTN mRNA levels did not change between E15 and postnatal day 14; thereafter, they gradually but insignificantly increased. GFR,1 and GFR,2 mRNA levels were high at E15, after which their signal intensities decreased. In whole-mounted specimens, neurofilament-positive axons were first detected in the bladder at E16. Conclusions: Our results suggest that GDNF and NRTN may act as trophic factors for neural in-growth to the bladder and/or for the maintenance of mature neurons innervating the bladder. These factors might also be involved in bladder morphogenesis. Neurourol. Urodynam. 22:83,88, 2003. © 2003 Wiley-Liss, Inc. [source]