Functionalized Polymers (functionalized + polymer)

Distribution by Scientific Domains


Selected Abstracts


Polyurethane- and Polystyrene-Supported 2,2,6,6-Tetramethyl- piperidine-1-oxyl (TEMPO); Facile Preparation, Catalytic Oxidation and Application in a Membrane Reactor

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 18 2008
Muhammad Afzal Subhani
Abstract In this contribution, the facile synthesis of two new polymer-supported 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) catalysts and their application in the catalytic oxidation of alcohols to carbonyl compounds are described. For attachment of the TEMPO group to the polymer an isocyanate functionalized polymer is chosen. This new approach facilitates the synthesis in comparison with previously existing methods which generally require deprotonation of TEMPO prior to reaction with the polymer. Following this approach, polyurethane (PU)- and polystyrene (PS)-based TEMPO catalysts are prepared in a one-step reaction from commercially available compounds. Both polymer-supported catalysts showed promising yields for a variety of substrates using inorganic and/or organic co-oxidants in biphasic and/or monophasic systems. The recyclability of the corresponding catalysts was studied in repetitive batch experiments using filtration or distillation depending on the support type. Furthermore, application of the homogeneous polyurethane-supported TEMPO for the selective oxidation of benzyl alcohol in a continously operated membrane reactor is demonstrated. [source]


Pyrrole derivatives for electrochemical coating of metallic medical devices

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 7 2004
Zehava Weiss
Abstract Electropolymerization of medical devices such as cardiovascular stents may posses advantages including a simple and reproducible process with the ability to control the thickness, adherence, and composition of the coating by the duration and intensity of the applied current, the monomer composition and concentration, the solvent, and the reaction conditions. The properties of the polymer can also be controlled by copolymerization of different monomers, grafting substituents to a functionalized polymer, and by entrapping biomolecules. This article describes the synthesis of a range of pyrrole-based monomers and their electrocoating onto stainless steel surfaces. N-substituted pyrrole monomers with C1,C18 alkyl chains and poly (ethylene glycol) chains were synthesized in good yields and purity. Electropolymerization of these monomers provided uniform coatings with different hydrophobicities. Studies now focus on the incorporation of drugs in the coated device for release from the surface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1658,1667, 2004 [source]


Polymer-Mediated Dispersion of Gold Nanoparticles: Using Supramolecular Moieties on the Periphery

ADVANCED MATERIALS, Issue 38-39 2009
Adam D. Celiz
A novel method of dispersing gold nanoparticles (Au NPs) is described. Thiol-terminated ureido-pyrimidinone (UPy)-functionalized polymers are attached to Au NPs to create a polymeric shell with quadruple hydrogen-bonding units on the periphery. By increasing the amount of UPy loading on the Au NPs, self-assembly into aggregates is observed with both 1H NMR spectroscopy and transmission electron microscopy. [source]


Polymer nanocomposites based on needle-like sepiolite clays: Effect of functionalized polymers on the dispersion of nanofiller, crystallinity, and mechanical properties

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2008
E. Bilotti
Abstract Polypropylene (PP)/sepiolite (Sep) nanocomposites are prepared by melt compounding in a mini-extruder apparatus. The often used maleic anhydride-modified polypropylene (PP-g-MA) is compared with two custom-made functionalized polymers, PP-acid and the di-block copolymer PP-PEO, with respect to the filler dispersion and filler reinforcement efficiency. For that purpose, morphological and mechanical studies are carried out by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and mechanical tensile tests. In addition, the nanocomposites are characterized by wide-angle X-ray scattering (WAXS) and differential scanning calorimetric (DSC) techniques, to assess the effect of the nanofiller on the crystalline structure of the PP matrix nano-filler. The use of PP-PEO and PP-acid resulted in a better nanofiller dispersion compared with traditional PP-g-MA-modified systems. Sepiolite acts as nucleating agent for the crystallization of PP and seems to lead to an orientation of the ,-phase crystals. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008 [source]


Systematic MALDI-TOF CID Investigation on Different Substituted mPEG 2000

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 6 2010
Katrin Knop
Abstract Methoxy poly(ethylene glycol) 2000 (mPEG 2000) samples were substituted via esterification reactions to convert the hydroxyl end group of the mPEG into potential initiators for the cationic ring opening polymerization of 2-oxazolines. These substitution products were investigated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS); in addition, detailed MALDI-TOF/TOF-collision induced dissociation (CID) MS studies were performed to introduce this method as complementary structural characterization tool allowing the detailed analysis of the prepared macromolecules. The CID of the macroinitiators revealed 1,4-hydrogen and 1,4-ethylene eliminations forming very regular fragmentation patterns which showed, depending on the end groups, different fragmentation series. Furthermore, very pronounced McLafferty,+,1 rearrangements (1,5 hydrogen-transfer) of the introduced ester end groups were observed leaving the mPEG molecule as neutral acid. This incisive loss revealed the exact molar mass for each end group and, therefore, represents an important tool for end group determination of functionalized polymers. [source]


Role of the interphase in the flow stability of reactive coextruded multilayer polymers

POLYMER ENGINEERING & SCIENCE, Issue 4 2009
Khalid Lamnawar
Coextrusion technologies are commonly used to produce multilayered composite sheets or films for a large range of applications from food packaging to optics. The contrast of rheological properties between layers can lead to interfacial instabilities. Important theoretical and experimental advances regarding theses defects have, during the last decades, been made using a mechanical and numerical approach. This study deals with the influence of the physicochemical affinity between the neighboring layers on interfacial instabilities for functionalized incompatible polymers. It was experimentally confirmed, in this case, that weak disturbance can be predicted by considering an interface of nonzero thickness (corresponding to an interdiffusion/reaction zone interphase) instead of a purely geometrical interface between the two reactive layers. According to the rheological investigations, an experimental strategy was here formulated to investigate the parameters that controlled the stability of the reactive multilayer flows. The role of the viscosity ratio, elasticity ratio, and layer ratio of the stability of the interface was also investigated coupling to the reaction rate/compatibilization phenomenon. Hence, based on this analysis, guidelines for a stable coextrusion of reactive functionalized polymers can be provided coupling the classical parameters and the physicochemical affinity at the polymer/polymer interface. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers [source]


Surface characterization and study of Langmuir films of poly(4-vinylpyridine) quaternized with n -alkylbromide

POLYMER INTERNATIONAL, Issue 8 2001
Ligia Gargallo
Abstract The surface behaviour of poly(4-vinylpyridine)s (P4VP) quaternized with four different alkyl chains (pentyl, hexyl, octyl and decy bromide) were studied. Surface pressure,area isotherms (,,A) at the air,water interface were determined. Depending on the length of the side-chains, the ,,A isotherms show a plateau region. An extensive plateau is observed for n,>,6. The plateau pressures are similar for n,,=,8 and n,,=,10. The monolayers are stable and exhibit hysteresis phenomena. Brewster angle microscopy (BAM) is used to monitor the monolayer topography of the polymer on water subphase. To obtain information about the surface energy (SE) and the degree of hydrophobicity of these systems, we have estimated the critical surface tension, ,c, and the dispersion force and polar contributions to SE, ,D and ,P, respectively, by measurements of the contact angle (CA) of water and bromobenzene on the polymer surface. The results obtained are depend on the length of the alkyl lateral chain of the functionalized polymers. © 2001 Society of Chemical Industry [source]


FI Catalysts: new olefin polymerization catalysts for the creation of value-added polymers

THE CHEMICAL RECORD, Issue 3 2004
Makoto Mitani
Abstract This contribution reports the discovery and application of phenoxy,imine-based catalysts for olefin polymerization. Ligand-oriented catalyst design research has led to the discovery of remarkably active ethylene polymerization catalysts (FI Catalysts), which are based on electronically flexible phenoxy,imine chelate ligands combined with early transition metals. Upon activation with appropriate cocatalysts, FI Catalysts can exhibit unique polymerization catalysis (e.g., precise control of product molecular weights, highly isospecific and syndiospecific propylene polymerization, regio-irregular polymerization of higher ,-olefins, highly controlled living polymerization of both ethylene and propylene at elevated temperatures, and precise control over polymer morphology) and thus provide extraordinary opportunities for the syntheses of value-added polymers with distinctive architectural characteristics. Many of the polymers that are available via the use of FI Catalysts were previously inaccessible through other means of polymerization. For example, FI Catalysts can form vinyl-terminated low molecular weight polyethylenes, ultra-high molecular weight amorphous ethylene,propylene copolymers and atactic polypropylenes, highly isotactic and syndiotactic polypropylenes with exceptionally high peak melting temperatures, well-defined and controlled multimodal polyethylenes, and high molecular weight regio-irregular poly(higher ,-olefin)s. In addition, FI Catalysts combined with MgCl2 -based compounds can produce polymers that exhibit desirable morphological features (e.g., very high bulk density polyethylenes and highly controlled particle-size polyethylenes) that are difficult to obtain with conventionally supported catalysts. In addition, FI Catalysts are capable of creating a large variety of living-polymerization-based polymers, including terminally functionalized polymers and block copolymers from ethylene, propylene, and higher ,-olefins. Furthermore, some of the FI Catalysts can furnish living-polymerization-based polymers catalytically by combination with appropriate chain transfer agents. Therefore, the development of FI Catalysts has enabled some crucial advances in the fields of polymerization catalysis and polymer syntheses. © 2004 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 4: 137,158; 2004: Published online in Wiley InterScience (www.interscience.wiley.com) DOI 10.1002/tcr.20010 [source]