Home About us Contact | |||
Functional Regions (functional + regions)
Selected AbstractsDetailed Visualization of the Functional Regions of the Rat Pituitary Gland by High-Resolution T2-Weighted MRIANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 3 2010E. Theunissen With 5 figures and 1 table Summary This high-resolution MRI study focuses on the visualization of the detailed morphology of the rat's pituitary gland by means of post-mortem as well as in vivo MRI at 9.4 T. Determination of the local T1- and T2-relaxation decay times allows to explain the regional image intensities which reflects the degree of tissue organization at the molecular level. Detailed characterization of the molecular level of the pituitary gland, as provided by the relaxation decay times, can offer a rigid platform with respect to functional or pathological explorations. It is demonstrated that T1-weighted imaging, as is routinely used in the clinic, can differentiate between the posterior and anterior lobe but not between the posterior and intermediate lobe. T2-weighted images, however, clearly show the three distinct lobes of the rat pituitary gland without the use of contrast agents, i.e. the posterior, the intermediate and the anterior lobe. Histological analysis of the rat's pituitary gland confirms the morphological structures seen on the MR images. Although the intermediate lobe is less defined in humans and can neither be differentiated by T1-weighted MRI, its clinical visualization might be possible in T2-weighted images. [source] Functional regions in the essential light chain of smooth muscle myosin as revealed by the mutagenesis approachFEBS JOURNAL, Issue 20 2000Sophie Quevillon-Chéruel The endogenous essential light chain (LC17) of myosin from intestine smooth muscle was replaced with mutated essential light chains prepared using recombinant techniques. Complete exchange was observed with histidine-tagged derivatives of LC17a, LC17b and E122A-LC17a (LC17a and LC17b are the usual constituants of smooth muscle myosin), with small changes in the ATPase activity of reconstituted myosins. Much less exchange was observed with the light-chain derivative lacking the last 12 amino acid residues, demonstrating the importance of this segment, which may act as one arm of a pair of pincers to bind the myosin heavy chain. [source] Functional regions of the N-terminal domain of the antiterminator RfaHMOLECULAR MICROBIOLOGY, Issue 2 2010Georgiy A. Belogurov Summary RfaH is a bacterial elongation factor that increases expression of distal genes in several long, horizontally acquired operons. RfaH is recruited to the transcription complex during RNA chain elongation through specific interactions with a DNA element called ops. Following recruitment, RfaH remains bound to RNA polymerase (RNAP) and acts as an antiterminator by reducing RNAP pausing and termination at some factor-independent and Rho-dependent signals. RfaH consists of two domains connected by a flexible linker. The N-terminal RfaH domain (RfaHN) recognizes the ops element, binds to the RNAP and reduces pausing and termination in vitro. Functional analysis of single substitutions in this domain reported here suggests that three separate RfaHN regions mediate these functions. We propose that a polar patch on one side of RfaHN interacts with the non-template DNA strand during recruitment, whereas a hydrophobic surface on the opposite side of RfaHN remains bound to the ,, subunit clamp helices domain throughout transcription of the entire operon. The third region is apparently dispensable for RfaH binding to the transcription complex but is required for the antitermination modification of RNAP. [source] Partition of distinct chromosomal regions: negotiable border and fixed borderGENES TO CELLS, Issue 6 2004Akatsuki Kimura Chromosomes are partitioned into distinct functional regions. For example, heterochromatin regions consist of condensed chromatin and contain few transcriptionally active genes, whereas euchromatin regions are less condensed and majority of active genes reside in the euchromatin regions. Because distinct regions reside in each chromosome, borders are accordingly established between these regions. A prevailing view of the borders is that they are ,walls' that actively inhibit communication between distinct regions on chromosomes. Although little is known about the molecular bases of these walls, specific DNA elements are considered to recruit these walls to define the positions of the borders. We call the borders established with this mechanism as ,fixed borders'. Past studies have identified various insulators (boundary DNA elements) that have been suggested to recruit fixed borders to them. Another mechanism, which we introduce and focus on in this review, does not require walls recruited by specific DNA elements at the chromosomal borders. Instead, the borders are defined by a balance of opposing enzymatic activities located at the opposite sides of the resultant borders. We name these borders ,negotiable borders'. Here we review some of the recent progress in the field that offer valuable insight into mechanisms of establishing structural and functional borders on chromosomes. [source] Detection of 95 novel mutations in coagulation factor VIII gene F8 responsible for hemophilia A: results from a single institution ,HUMAN MUTATION, Issue 7 2006Benoît Guillet Abstract Hemophilia A (HA) is an X-linked hereditary bleeding disorder defined by a qualitative and/or quantitative factor VIII (FVIII) deficiency. The molecular diagnosis of HA is challenging because of the high number of different causative mutations that are distributed throughout the large F8 gene. The putative role of the novel mutations, especially missense mutations, may be difficult to interpret as causing HA. We identified 95 novel mutations out of 180 different mutations responsible for HA in 515 patients from 406 unrelated families followed up at a single hemophilia treatment center of the Bicêtre university hospital (Assistance Publique-Hôpitaux de Paris [AP-HP], Le Kremlin-Bicêtre). These 95 novel mutations comprised 55 missense mutations, 12 nonsense mutations, 11 splice site mutations, and 17 small insertions/deletions. We therefore developed a mutation analysis based on a body of proof that combines the familial segregation of the mutation, the resulting biological and clinical HA phenotype, and the molecular consequences of the amino acid (AA) substitution. For the latter, we studied the putative biochemical modifications: its conservation status with cross-species FVIII and homologous proteins, its putative location in known FVIII functional regions, and its spatial position in the available FVIII 3D structures. The usefulness of such a strategy in interpreting the causality of novel F8 mutations is emphasized. Hum Mutat 27(7), 676,685, 2006. © 2006 Wiley-Liss, Inc. [source] Three-dimensional reconstruction and neural map of the serotonergic brain of Asplanchna brightwellii (Rotifera, Monogononta)JOURNAL OF MORPHOLOGY, Issue 4 2009Rick Hochberg Abstract The basic organization of the rotifer brain has been known for nearly a century; yet, fine details on its structure and organization remain limited despite the importance of rotifers in studies of evolution and population biology. To gain insight into the structure of the rotifer brain, and provide a foundation for future neurophysiologic and neurophylogenetic research, the brain of Asplanchna brightwellii was studied with immunohistochemistry, confocal laser scanning microscopy, and computer modeling. A three-dimensional map of serotonergic connections reveals a complex network of approximately 28 mostly unipolar, cerebral perikarya and associated neurites. Cells and their projections display symmetry in quantity, size, connections, and pathways between cerebral hemispheres within and among individuals. Most immunopositive cells are distributed close to the brain midline. Three pairs of neurites form decussations at the brain midline and may innervate sensory receptors in the corona. A single neuronal pathway appears to connect both the lateral horns and dorsolateral apical receptors, suggesting that convergence of synaptic connections may be common in the afferent sensory systems of rotifers. Results show that the neural map of A. brightwellii is much more intricate than that of other monogonont rotifers; nevertheless, the consistency in neural circuits provides opportunities to identify homologous neurons, distinguish functional regions based on neurotransmitter phenotype, and explore new avenues of neurophylogeny in Rotifera. J. Morphol. 2009. © 2008 Wiley-Liss, Inc. [source] Agonistic behavior and electrical stimulation of the antennae induces Fos-like protein expression in the male cricket brainARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 1 2010Kaushik Ghosal Abstract Immediate early genes (IEG) such as c-Fos and Fos-related antigens (FRA) have been used as markers of neuronal activation. In this study, we determined whether the expression of c-Fos/FRAs is increased in the brains of adult male Acheta domesticus crickets following agonistic interactions. We looked for c-Fos/FRA proteins in the brain of un-fought, control male crickets and of dominant and subordinate male crickets sacrificed at different time periods following an agonistic interaction. Using immunoblot analysis, we found four different c-Fos/FRA-like proteins in the adult cricket brain. Continuous agonistic interaction increased c-Fos/FRA protein expression in the brains of subordinate males compared to control and dominant males. In addition, direct electrical stimulation of the male cricket antennae increased c-Fos/FRA-like protein in the brain. We identified the specific brain regions that exhibit c-Fos/FRA-like immunoreactivity in crickets. We detected c-Fos/FRA-like cellular immunoreactivity in different functional regions of the adult brain including the pars intercerebralis, protocerebrum, deutocerebrum, and the cortex of the mushroom bodies. © 2010 Wiley Periodicals, Inc. [source] Comparative studies of brain evolution: a critical insight from the ChiropteraBIOLOGICAL REVIEWS, Issue 1 2009Dina K. N Dechmann Abstract Comparative studies of brain size have a long history and contributed much to our understanding of the evolution and function of the brain and its parts. Recently, bats have been used increasingly as model organisms for such studies because of their large number of species, high diversity of life-history strategies, and a comparatively detailed knowledge of their neuroanatomy. Here, we draw attention to inherent problems of comparative brain size studies, highlighting limitations but also suggesting alternative approaches. We argue that the complexity and diversity of neurological tasks that the brain and its functional regions (subdivisions) must solve cannot be explained by a single or few variables representing selective pressures. Using an example we show that by adding a single relevant variable, morphological adaptation to foraging strategy, to a previous analysis a correlation between brain and testes mass disappears completely and changes entirely the interpretation of the study. Future studies should not only look for novel determinants of brain size but also include known correlates in order to add to our current knowledge. We believe that comparisons at more detailed anatomical, taxonomic, and geographical levels will continue to contribute to our understanding of the function and evolution of mammalian brains. [source] |