Functional Neuroimaging Studies (functional + neuroimaging_studies)

Distribution by Scientific Domains


Selected Abstracts


The neuroanatomy of grapheme,color synesthesia

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2009
Lutz Jäncke
Abstract Grapheme,color synesthetes perceive particular colors when seeing a letter, word or number (grapheme). Functional neuroimaging studies have provided some evidence in favor of a neural basis for this type of synesthesia. Most of these studies have reported extra activations in the fusiform gyrus, which is known to be involved in color, letter and word processing. The present study examined different neuroanatomical features (i.e. cortical thickness, cortical volume and cortical surface area) in a sample of 48 subjects (24 grapheme,color synesthetes and 24 control subjects), and revealed increased cortical thickness, volume and surface area in the right and left fusiform gyrus and in adjacent regions, such as the lingual gyrus and the calcarine cortex, in grapheme,color synesthetes. In addition, we set out to analyze structural connectivity based on fractional anisotropy (FA) measurements in a subsample of 28 subjects (14 synesthetes and 14 control subjects). In contrast to the findings of a recent neuroanatomical study using modern diffusion tensor imaging measurement techniques, we did not detect any statistically significant difference in FA between synesthetes and non-synesthetes in the fusiform gyri. Our study thus supports the hypothesis of local anatomical differences in cortical characteristics in the vicinity of the V4 complex. The observed altered brain anatomy in grapheme,color synesthetes might be the anatomical basis for this particular form of synesthesia but it is also possible that the detected effects are a consequence (rather than the primary cause) of the life-long experience of grapheme,color synesthesia. [source]


Spatiotemporal mapping of sex differences during attentional processing

HUMAN BRAIN MAPPING, Issue 9 2009
Andres H. Neuhaus
Abstract Functional neuroimaging studies have increasingly aimed at approximating neural substrates of human cognitive sex differences elicited by visuospatial challenge. It has been suggested that females and males use different behaviorally relevant neurocognitive strategies. In females, greater right prefrontal cortex activation has been found in several studies. The spatiotemporal dynamics of neural events associated with these sex differences is still unclear. We studied 22 female and 22 male participants matched for age, education, and nicotine with 29-channel-electroencephalogram recorded under a visual selective attention paradigm, the Attention Network Test. Visual event-related potentials (ERP) were topographically analyzed and neuroelectric sources were estimated. In absence of behavioral differences, ERP analysis revealed a novel frontal-occipital second peak of visual N100 that was significantly increased in females relative to males. Further, in females exclusively, a corresponding central ERP component at around 220 ms was found; here, a strong correlation between stimulus salience and sex difference of the central ERP component amplitude was observed. Subsequent source analysis revealed increased cortical current densities in right rostral prefrontal (BA 10) and occipital cortex (BA 19) in female subjects. This is the first study to report on a tripartite association between sex differences in ERPs, visual stimulus salience, and right prefrontal cortex activation during attentional processing. Hum Brain Mapp 2009. © 2009 Wiley-Liss, Inc. [source]


Annotation: Development of facial expression recognition from childhood to adolescence: behavioural and neurological perspectives

THE JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY AND ALLIED DISCIPLINES, Issue 7 2004
Catherine Herba
Background:, Intact emotion processing is critical for normal emotional development. Recent advances in neuroimaging have facilitated the examination of brain development, and have allowed for the exploration of the relationships between the development of emotion processing abilities, and that of associated neural systems. Methods:, A literature review was performed of published studies examining the development of emotion expression recognition in normal children and psychiatric populations, and of the development of neural systems important for emotion processing. Results:, Few studies have explored the development of emotion expression recognition throughout childhood and adolescence. Behavioural studies suggest continued development throughout childhood and adolescence (reflected by accuracy scores and speed of processing), which varies according to the category of emotion displayed. Factors such as sex, socio-economic status, and verbal ability may also affect this development. Functional neuroimaging studies in adults highlight the role of the amygdala in emotion processing. Results of the few neuroimaging studies in children have focused on the role of the amygdala in the recognition of fearful expressions. Although results are inconsistent, they provide evidence throughout childhood and adolescence for the continued development of and sex differences in amygdalar function in response to fearful expressions. Studies exploring emotion expression recognition in psychiatric populations of children and adolescents suggest deficits that are specific to the type of disorder and to the emotion displayed. Conclusions:, Results from behavioural and neuroimaging studies indicate continued development of emotion expression recognition and neural regions important for this process throughout childhood and adolescence. Methodological inconsistencies and disparate findings make any conclusion difficult, however. Further studies are required examining the relationship between the development of emotion expression recognition and that of underlying neural systems, in particular subcortical and prefrontal cortical structures. These will inform understanding of the neural bases of normal and abnormal emotional development, and aid the development of earlier interventions for children and adolescents with psychiatric disorders. [source]


MR evaluation of crossed and uncrossed cerebral,cerebellar diaschisis

ACTA NEUROLOGICA SCANDINAVICA, Issue 1 2003
A. Chakravarty
In three patients with infantile hemiplegia syndrome, MR imaging done later in life showed significant volume loss in the cerebellar hemisphere contralateral to the side of the affected cerebrum in two and ipsilateral in one. By comparison, the cerebellar volume loss seemed to correlate with the degree of volume loss in the contralateral cerebral hemispheres in two patients. These observations provide morphological evidence of the phenomenon of crossed and uncrossed/ipsilateral cerebral,cerebellar diaschisis (CCD and ICD). Functional neuroimaging studies in support of the concept of CCD and ICD have been critically reviewed in the light of the morphological changes demonstrated in the cases cited herein. [source]


Neuroanatomical substrates of social cognition dysfunction in autism

DEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 4 2004
Kevin Pelphrey
Abstract In this review article, we summarize recent progress toward understanding the neural structures and circuitry underlying dysfunctional social cognition in autism. We review selected studies from the growing literature that has used the functional neuroimaging techniques of cognitive neuroscience to map out the neuroanatomical substrates of social cognition in autism. We also draw upon functional neuroimaging studies with neurologically normal individuals and individuals with brain lesions to highlight the insights these studies offer that may help elucidate the search for the neural basis of social cognition deficits in autism. We organize this review around key brain structures that have been implicated in the social cognition deficits in autism: (1) the amygdala, (2) the superior temporal sulcus region, and (3) the fusiform gyrus. We review some of what is known about the contribution of each structure to social cognition and then review autism studies that implicate that particular structure. We conclude with a discussion of several potential future directions in the cognitive neuroscience of social deficits in autism. © 2004 Wiley-Liss, Inc. MRDD Research Reviews 2004;10:259,271. [source]


Basal ganglia and frontal involvement in self-generated and externally-triggered finger movements in the dominant and non-dominant hand

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2009
Félix-Etienne François-Brosseau
Abstract Although there are a number of functional neuroimaging studies that have investigated self-initiated and externally-triggered movements, data directly comparing right and left hands in this context are very scarce. The goal of this study was to further understand the role of the basal ganglia and prefrontal cortex in the realm of self-initiated and externally-triggered right and left hand movements. Young healthy right-handed adults performed random, follow and repeat conditions of a finger moving task with their right and left hands, while being scanned with functional magnetic resonance imaging. Significant activation of the dorsolateral prefrontal cortex was observed when comparing the self-initiated movements with the repeated control and externally-triggered movements when using either hand in agreement with its role in monitoring. The caudate nucleus activation was found during self-initiated conditions compared with the control condition when either hand was used, showing that it is particularly involved when a new movement needs to be planned. Significant putamen activation was observed in all within-hand contrasts except for the externally-triggered vs. control condition when using the left hand. Furthermore, greater putaminal activation was found for the left vs. the right hand during the control condition, but for the right vs. the left hand subtraction for the self-initiated condition. Our results show that the putamen is particularly involved in the execution of non-routine movements, especially if those are self-initiated. Furthermore, we propose that, for right-handed people performing fine movements, as far as putamen involvement is concerned, the lack of proficiency of the non-dominant hand may prevail over other task demands. [source]


Superior temporal lobe dysfunction and frontotemporal dysconnectivity in subjects at risk of psychosis and in first-episode psychosis

HUMAN BRAIN MAPPING, Issue 12 2009
Nicolas A. Crossley
Abstract Background: Superior temporal lobe dysfunction is a robust finding in functional neuroimaging studies of schizophrenia and is thought to be related to a disruption of fronto-temporal functional connectivity. However, the stage of the disorder at which these functional alterations occur is unclear. We addressed this issue by using functional MRI (fMRI) to study subjects in the prodromal and first episode phases of schizophrenia. Methods: Subjects with an at risk mental state (ARMS) for psychosis, a first psychotic episode (FEP), and controls were studied using fMRI while performing a working memory task. Activation in the superior temporal gyrus (STG) was assessed using statistical parametric mapping, and its relationship to frontal activation was examined using dynamic causal modeling. Results: The STG was differentially engaged across the three groups. There was deactivation of this region during the task in controls, whereas subjects with FEP showed activation and the response in subjects with ARMS was intermediately relative to the two other groups. There were corresponding differences in the effective connectivity between the STG and the middle frontal gyrus across the three groups, with a negative coupling between these areas in controls, a positive coupling in the FEP group, and an intermediate value in the ARMS group. Conclusions: A failure to deactivate the superior temporal lobe during tasks that engage prefrontal cortex is evident at the onset of schizophrenia and may reflect a disruption of fronto-temporal connectivity. Qualitatively similar alterations are evident in people with prodromal symptoms of the disorder. Hum Brain Mapp, 2009. © 2009 Wiley-Liss, Inc. [source]


Two systems of resting state connectivity between the insula and cingulate cortex

HUMAN BRAIN MAPPING, Issue 9 2009
Keri S. Taylor
Abstract The insula and cingulate cortices are implicated in emotional, homeostatic/allostatic, sensorimotor, and cognitive functions. Non-human primates have specific anatomical connections between sub-divisions of the insula and cingulate. Specifically, the anterior insula projects to the pregenual anterior cingulate cortex (pACC) and the anterior and posterior mid-cingulate cortex (aMCC and pMCC); the mid-posterior insula only projects to the posterior MCC (pMCC). In humans, functional neuroimaging studies implicate the anterior insula and pre/subgenual ACC in emotional processes, the mid-posterior insula with awareness and interoception, and the MCC with environmental monitoring, response selection, and skeletomotor body orientation. Here, we tested the hypothesis that distinct resting state functional connectivity could be identified between (1) the anterior insula and pACC/aMCC; and (2) the entire insula (anterior, middle, and posterior insula) and the pMCC. Functional connectivity was assessed from resting state fMRI scans in 19 healthy volunteers using seed regions of interest in the anterior, middle, and posterior insula. Highly correlated, low-frequency oscillations (< 0.05 Hz) were identified between specific insula and cingulate subdivisions. The anterior insula was shown to be functionally connected with the pACC/aMCC and the pMCC, while the mid/posterior insula was only connected with the pMCC. These data provide evidence for a resting state anterior insula,pACC/aMCC cingulate system that may integrate interoceptive information with emotional salience to form a subjective representation of the body; and another system that includes the entire insula and MCC, likely involved in environmental monitoring, response selection, and skeletomotor body orientation. Human Brain Mapp 2009. © 2008 Wiley-Liss, Inc. [source]


A voxel-based morphometry study of frontal gray matter correlates of impulsivity,

HUMAN BRAIN MAPPING, Issue 4 2009
Koji Matsuo
Abstract Impulsivity is a personality trait exhibited by healthy individuals, but excessive impulsivity is associated with some mental disorders. Lesion and functional neuroimaging studies indicate that the ventromedial prefrontal region (VMPFC), including the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and medial prefrontal cortex, and the amygdala may modulate impulsivity and aggression. However, no morphometric study has examined the association between VMPFC and impulsivity. We hypothesized that healthy subjects with high impulsivity would have smaller volumes in these brain regions compared with those with low impulsivity. Sixty-two healthy subjects were studied (age 35.4 ± 12.1 years) using a 1.5-T MRI system. The Barratt impulsiveness scale (BIS) was used to assess impulsivity. Images were processed using an optimized voxel-based morphometry (VBM) protocol. We calculated the correlations between BIS scale scores and the gray matter (GM) and white matter (WM) volumes of VMPFC and amygdala. GM volumes of the left and right OFC were inversely correlated with the BIS total score (P = 0.04 and 0.02, respectively). Left ACC GM volumes had a tendency to be inversely correlated with the BIS total score (P = 0.05). Right OFC GM volumes were inversely correlated with BIS nonplanning impulsivity, and left OFC GM volumes were inversely correlated with motor impulsivity. There were no significant WM volume correlations with impulsivity. The results of this morphometry study indicate that small OFC volume relate to high impulsivity and extend the prior finding that the VMPFC is involved in the circuit modulating impulsivity. Hum Brain Mapp 2009. © 2008 Wiley-Liss, Inc. [source]


Selective visuo-haptic processing of shape and texture

HUMAN BRAIN MAPPING, Issue 10 2008
Randall Stilla
Abstract Previous functional neuroimaging studies have described shape-selectivity for haptic stimuli in many cerebral cortical regions, of which some are also visually shape-selective. However, the literature is equivocal on the existence of haptic or visuo-haptic texture-selectivity. We report here on a human functional magnetic resonance imaging (fMRI) study in which shape and texture perception were contrasted using haptic stimuli presented to the right hand, and visual stimuli presented centrally. Bilateral selectivity for shape, with overlap between modalities, was found in a dorsal set of parietal areas: the postcentral sulcus and anterior, posterior and ventral parts of the intraparietal sulcus (IPS); as well as ventrally in the lateral occipital complex. The magnitude of visually- and haptically-evoked activity was significantly correlated across subjects in the left posterior IPS and right lateral occipital complex, suggesting that these areas specifically house representations of object shape. Haptic shape-selectivity was also found in the left postcentral gyrus, the left lingual gyrus, and a number of frontal cortical sites. Haptic texture-selectivity was found in ventral somatosensory areas: the parietal operculum and posterior insula bilaterally, as well as in the right medial occipital cortex, overlapping with a medial occipital cortical region, which was texture-selective for visual stimuli. The present report corroborates and elaborates previous suggestions of specialized visuo-haptic processing of texture and shape. Hum Brain Mapp 2008. © 2007 Wiley-Liss, Inc. [source]


A systematic review and quantitative appraisal of fMRI studies of verbal fluency: Role of the left inferior frontal gyrus

HUMAN BRAIN MAPPING, Issue 10 2006
Sergi G. Costafreda
Abstract The left inferior frontal gyrus (LIFG) has consistently been associated with both phonologic and semantic operations in functional neuroimaging studies. Two main theories have proposed a different functional organization in the LIFG for these processes. One theory suggests an anatomic parcellation of phonologic and semantic operations within the LIFG. An alternative theory proposes that both processes are encompassed within a supramodal executive function in a single region in the LIFG. To test these theories, we carried out a systematic review of functional magnetic resonance imaging studies employing phonologic and semantic verbal fluency tasks. Seventeen articles meeting our pre-established criteria were found, consisting of 22 relevant experiments with 197 healthy subjects and a total of 41 peak activations in the LIFG. We determined 95% confidence intervals of the mean location (x, y, and z coordinates) of peaks of blood oxygenation level-dependent (BOLD) responses from published phonologic and semantic verbal fluency studies using the nonparametric technique of bootstrap analysis. Significant differences were revealed in dorsal,ventral (z -coordinate) localizations of the peak BOLD response: phonologic verbal fluency peak BOLD response was significantly more dorsal to the peak associated with semantic verbal fluency (confidence interval of difference: 1.9,17.4 mm). No significant differences were evident in antero,posterior (x -coordinate) or medial,lateral (y -coordinate) positions. The results support distinct dorsal,ventral locations for phonologic and semantic processes within the LIFG. Current limitations to meta-analytic integration of published functional neuroimaging studies are discussed. Hum Brain Mapp, 2006. © 2006 Wiley-Liss, Inc. [source]


A comparison of label-based review and ALE meta-analysis in the Stroop task

HUMAN BRAIN MAPPING, Issue 1 2005
Angela R. Laird
Abstract Meta-analysis is an important tool for interpreting results of functional neuroimaging studies and is highly influential in predicting and testing new outcomes. Although traditional label-based review can be used to search for agreement across multiple studies, a new function-location meta-analysis technique called activation likelihood estimation (ALE) offers great improvements over conventional methods. In ALE, reported foci are modeled as Gaussian functions and pooled to create a statistical whole-brain image. ALE meta-analysis and the label-based review were used to investigate the Stroop task in normal subjects, a paradigm known for its effect of producing conflict and response inhibition due to subjects' tendency to perform word reading as opposed to color naming. Both methods yielded similar activation patterns that were dominated by response in the anterior cingulate and the inferior frontal gyrus. ALE showed greater involvement of the anterior cingulate as compared to that in the label-based technique; however, this was likely due to the increased spatial level of distinction allowed with the ALE method. With ALE, further analysis of the anterior cingulate revealed evidence for somatotopic mapping within the rostral and caudal cingulate zones, an issue that has been the source of some conflict in previous reviews of the anterior cingulate cortex. Hum Brain Mapp 25:6,21, 2005. © 2005 Wiley-Liss, Inc. [source]


Modeling of activation data in the BrainMapÔ database: Detection of outliers

HUMAN BRAIN MAPPING, Issue 3 2002
Finn Årup Nielsen
Abstract We describe a system for meta-analytical modeling of activation foci from functional neuroimaging studies. Our main vehicle is a set of density models in Talairach space capturing the distribution of activation foci in sets of experiments labeled by lobar anatomy. One important use of such density models is identification of novelty, i.e., low probability database events. We rank the novelty of the outliers and investigate the cause for 21 of the most novel, finding several outliers that are entry and transcription errors or infrequent or non-conforming terminology. We briefly discuss the use of atlases for outlier detection. Hum. Brain Mapping 15:146,156, 2002. © 2002 Wiley-Liss, Inc. [source]


Control of semantic interference in episodic memory retrieval is associated with an anterior cingulate-prefrontal activation pattern

HUMAN BRAIN MAPPING, Issue 2 2001
Manfred Herrmann
Prefrontal activation is a consistent finding in functional neuroimaging studies of episodic memory retrieval. In the present study we aimed at a further analysis of prefrontal neural systems involved in the executive control of context-specific properties in episodic memory retrieval using an event-related fMRI design. Nine subjects were asked to learn two 20-item word lists that consisted of concrete nouns assigned to four semantic categories. Ten items of both word lists referred to the same semantic category. Subjects were instructed to determine whether nouns displayed in random order corresponded to the first 20-item target list. The interference evoked by the retrieval of semantically related items of the second list resulted in significantly longer reaction times compared to the noninterference condition. Contrasting the interference against the noninterference retrieval condition demonstrated an activation pattern that comprised a right anterior cingulate and frontal opercular area and a left-lateralized dorsolateral prefrontal region. Trial averaged time series revealed that the PFC areas were selectively activated at the interference condition and did not respond to the familiarity of learned words. These findings suggest a functionally separable role of prefrontal cortical areas mediating processes associated with the executive control of interfering context information in episodic memory retrieval. Hum. Brain Mapping 13:94,103, 2001. © 2001 Wiley-Liss, Inc. [source]


Assessing spatial probabilistic distributional differences in the common space between schizophrenics and normal controls based on a novel automated probabilistic pattern analysis method

INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, Issue 5-6 2008
Bang-Bon Koo
Abstract Because of the complex nature of the human brain, a full understanding of its various group specific variation factors such as volume, shape, and location related to age, gender, ethnic, and disease might be provided in both structural and functional neuroimaging studies. To serve this purpose, a novel approach for characterizing the group variability information using group specific labeled probabilistic maps was introduced in this article. An automatic labeling technique was applied to encode group specific probabilistic information for each region of interests (ROIs) covering the overall cortical region and a probabilistic pattern analytic method was proposed to assess the difference in the spatial extent between 70 schizophrenics and 70 controls in the common space. From our proposed method, we found major differences in 17 ROIs that had shown large variation in schizophrenics. Most of these ROIs were in the frontal and the temporal lobe and only three ROIs were in the parietal and the occipital lobe. The ROIs highlighted through our proposed method could be connected with previous morphological findings on schizophrenia and it also might be considered in functional analysis. As a result, our method could provide intuitive information on group difference relevant to the overall anatomical variability in the substructural level. Thus, it could be used as a prompting system to search and examine the regions of the brain that are worthy of further precise analysis by various sub-cortical region based group studies in assessing specific patterns related to diseases. © 2008 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 18, 310,324, 2008 [source]


Levels of ,-Aminobutyric Acid-Benzodiazepine Receptors in Abstinent, Alcohol-Dependent Women: Preliminary Findings From an 123I-Iomazenil Single Photon Emission Tomography Study

ALCOHOLISM, Issue 9 2000
A. R. Lingford-Hughes
Background: Although alcohol dependence in women is an increasing problem, little is known about the effects of alcohol on the female brain. Evidence from a few structural and functional neuroimaging studies suggests that the female brain may be more susceptible than the male brain to the harmful effects of alcohol. However, no in vivo studies of the neuropharmacology of alcohol dependence in women have been carried out. The aim of this preliminary study was to test the hypothesis that alcohol dependence in women is associated with greater reduction in ,-aminobutyric acid (GABA)-benzodiazepine receptor levels than in men with an equivalent drinking history. Methods: We used single photon emission tomography and 123I-iomazenil to label the central GABA-benzodiazepine receptor and to compare semiquantified levels in 9 abstinent alcohol-dependent and 13 control women. These groups were further compared with equivalent male groups from a previous study. Results: There was a trend toward a reduction in GABA-benzodiazepine receptor levels in alcohol-dependent women, but this did not reach significance. These lower levels were seen primarily in the cerebellum, occipital lobes, and parietal cortex (left > right). This was in marked contrast with the pattern of reduction seen in the previous study of male dependence, where significant reductions were seen primarily in the frontal cortex. Conclusions: Due to the semiquantitative analysis performed and the relatively small number of subjects in this study, which resulted in a nonsignificant trend, we can only comment on the differences in the pattern of lower levels of GABA-benzodiazepine receptors seen in alcohol dependence in men and women. Although we are not able to ascertain whether the female brain is more susceptible to the effects of alcohol, it appears that alcohol has a differential effect on the central GABA-benzodiazepine receptors in men and women. Recent animal evidence supports this hypothesis. Future studies should explore whether other neuropharmacological differences exist between men and women in alcohol dependence that could have implications for pharmacotherapy. [source]


Anterior cingulate cortex volume reduction in patients with panic disorder

PSYCHIATRY AND CLINICAL NEUROSCIENCES, Issue 3 2008
Takeshi Asami md
Aim:, Recent neuroimaging studies have suggested that the anterior cingulate cortex (ACC) has an important role in the pathology of panic disorder. Despite numerous functional neuroimaging studies that have elucidated the strong relationship between functional abnormalities of the ACC and panic disorder and its symptoms and response to emotional tasks associated with panic disorder, there has been no study showing volumetric changes of the ACC or its subregions. Methods:, To clarify the structural abnormalities of ACC and its subregions, the combination of region of interest (ROI) and optimized voxel-based morphometry (VBM) methods were performed on 26 patients with panic disorder, and 26 age and sex-matched healthy subjects. In the ROI study, ACC was divided into four subregions: dorsal, rostral, subcallosal and subgenual ACC. Results:, The results of the manually traced ROI volume comparison showed significant volume reduction in the right dorsal ACC. VBM also showed a volume reduction in the right dorsal as well as a part of the rostral ACC as a compound mass. Conclusions:, Both manual ROI tracing and optimized VBM suggest a subregion-specific pattern of ACC volume deficit in panic disorder. In addition to functional abnormalities, these results suggest that structural abnormalities of the ACC contribute to the pathophysiology of panic disorder. [source]


Emotional processing in male adolescents with childhood-onset conduct disorder

THE JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY AND ALLIED DISCIPLINES, Issue 7 2008
Sabine C. Herpertz
Background:, Boys with early onset of conduct disorder (CD), most of whom also meet diagnostic criteria of a comorbid attention deficit hyperactivity disorder (ADHD), tend to exhibit high levels of aggression throughout development. While a number of functional neuroimaging studies on emotional processing have been performed in antisocial adults, little is known about how CD children process emotional information. Method:, Functional magnetic resonance imaging data were analyzed in 22 male adolescents aged 12 to 17 years with childhood-onset CD (16 of them with comorbid ADHD) compared to 22 age-matched male healthy controls. In order to consider the likely confounding of results through ADHD comorbidity, we performed a supplementary study including 13 adolescent subjects with pure ADHD who were compared with healthy controls. To challenge emotional processing of stimuli, a passive viewing task was applied, presenting pictures of negative, positive or neutral valence. Results:, When comparing CD/combined disorder patients with healthy controls, we found enhanced left-sided amygdala activation in response to negative pictures as compared to neutral pictures in the patient group. In addition, these boys exhibited no reduced activation in the orbitofrontal, anterior cingulate and insular cortices. By contrast, children with pure ADHD did not show any abnormalities in amygdala activation but showed decreased neural activity in the insula only in response to negative pictures. Conclusions:, Increased rather than reduced amygdala activation found in our study may indicate an enhanced response to environmental cues in adolescents with early-onset CD (most of whom also met the condition of ADHD), and is not consistent with the assumption of a reduced capacity to take note of affective information in the social environment. Further studies with an emphasis on developmental aspects of affect regulation are needed to clarify the relationship between CD and adult personality pathology associated with different modes of persistent antisocial behavior. [source]