Home About us Contact | |||
Functional Group Identity (functional + group_identity)
Selected AbstractsPlant functional group identity influences short-term peatland ecosystem carbon flux: evidence from a plant removal experimentFUNCTIONAL ECOLOGY, Issue 2 2009Susan E. Ward Summary 1Northern hemisphere peatlands are globally important stores of organic soil carbon. We examined effects of plant functional group identity on short-term carbon (C) flux in an ombrotrophic peatland in northern England, UK, by selectively removing one of each of the three dominant plant functional groups (ericoid dwarf-shrubs, graminoids and bryophytes). Carbon dynamics were quantified by a combination of CO2 flux measurements and 13CO2 stable isotope pulse labelling approaches. 2Significant effects of plant functional group removals on CO2 fluxes and tracer 13C uptake and turnover were detected. Removal of ericoid dwarf-shrubs had the greatest influence on gross CO2 flux, increasing rates of respiration and photosynthesis by > 200% relative to the undisturbed control. After pulse labelling with 13CO2, we found that turnover of recent photosynthate, measured as respired 13CO2, was also greatest in the absence of dwarf-shrubs. 3Analysis of 13C tracer enrichment in leaf tissues from all plant removal treatments showed that the rate of fixation of 13CO2 and turnover of 13C labelled photosynthate in leaf tissue was greatest in graminoids and lowest in bryophytes. Furthermore, graminoid leaf 13C enrichment was greatest when growing in the absence of dwarf-shrubs, suggesting that the presence of dwarf-shrubs reduced the photosynthetic activity of graminoids. 4We conclude that plant functional groups differentially influence the uptake and short-term flux of carbon in peatlands, suggesting that changes in the functional composition of vegetation resulting from global change have the potential to alter short-term patterns of carbon exchange in peatland. [source] Ecosystem properties determined by plant functional group identityJOURNAL OF ECOLOGY, Issue 2 2010Jennie R. McLaren Summary 1.,Ecosystem properties may be determined by the number of different species or groups of species in a community, the identity of those groups, and their relative abundance. The mass ratio theory predicts that the effect of species or groups of species on ecosystem properties will be dependent on their proportional abundance in a community. 2.,Single plant functional groups (graminoids, legumes, non-leguminous forbs) were removed from a natural grassland in northern Canada to examine the role of group identity in determining both ecosystem properties and biomass compensation by remaining species. Removals were conducted across two different environmental treatments (fertilization and fungicide) to examine the context dependency of functional group identity effects. 3.,The degree of biomass compensation in the first 4 years after removal was influenced by the identity of the functional group removed and also of those remaining. When graminoids were removed, none of the remaining functional groups compensated for the loss of biomass. Graminoids partially compensated for the removal of forbs or legumes, with the degree of compensation depending on environmental treatments. 4.,Light interception, soil moisture and soil nutrients were all influenced by functional group identity, with graminoids having a greater impact than expected based on their biomass contribution to the community. Legumes, in contrast, had very little effect on any of the ecosystem properties measured. 5.,For most ecosystem properties measured, the role of plant functional groups was not context dependent; functional groups had the same effect on ecosystem properties regardless of fertilization or fungicide treatments. 6.,Synthesis. We have shown that the effects of losing a functional group do not solely depend on the group's dominance. In this northern grassland, there are greater effects of losing graminoids than one would predict based on their biomass contributions to the community, and functional group identity plays a critical role in determining the effects of diversity loss. [source] Traits, neighbors, and species performance in prairie restorationAPPLIED VEGETATION SCIENCE, Issue 3 2010R.E. Roberts Abstract Questions: Are traits related to the performance of plant species in restoration? Are the relationships between traits and performance consistent across the functional groups of annual forbs, perennial forbs and grasses? Do the relationships between traits and performance depend on neighboring functional groups? Location: A former agricultural field, being restored to native upland prairie, in the Willamette Valley of western Oregon, USA. Methods: Twenty-eight native species, representing three functional groups, were sown in seven different combinations. Eleven functional traits were measured from plants in the laboratory and in the field. Correlations between individual traits and performance variables were measured and regression techniques used to determine which sets of traits were most strongly related to performance. Results: Sets of traits explained up to 56% of variation in cover, and up to 48% of variation in establishment frequency. The relationships between traits and performance were influenced by functional group identity; the functional group identity of neighboring species also influenced species' cover and the relationships between traits and cover. Species' establishment rate in monoculture was the trait most strongly correlated to both establishment and cover in mixtures. In multi-trait models, annual forb functional group identity was strongly related to establishment in mixtures, and height, leaf weight ratio at 7 d and seed mass were strongly related to cover. Conclusions: Multiple-trait models should be a useful way of predicting the performance of species prior to sowing in restoration. The functional group identity of each species and the other species being sown may need to be taken into account when making predictions. [source] |