Home About us Contact | |||
Functional Genes (functional + gene)
Selected AbstractsGrowth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosmsENVIRONMENTAL MICROBIOLOGY, Issue 5 2008Maria Tourna Summary Ammonia oxidation, as the first step in the nitrification process, plays a central role in the global cycling of nitrogen. Although bacteria are traditionally considered to be responsible for ammonia oxidation, a role for archaea has been suggested by data from metagenomic studies and by the isolation of a marine, autotrophic, ammonia-oxidizing, non-thermophilic crenarchaeon. Evidence for ammonia oxidation by non-thermophilic crenarchaea in marine and terrestrial environments is largely based on abundance of bacterial and archaeal ammonia monooxygenase (amo) genes, rather than activity. In this study, we have determined the influence of temperature on the response of ammonia-oxidizing bacteria and archaea in nitrifying soil microcosms using two approaches, involving analysis of transcriptional activity of 16S rRNA genes and of a key functional gene, amoA, which encodes ammonia monooxygenase subunit A. There was little evidence of changes in relative abundance or transcriptional activity of ammonia-oxidizing bacteria during nitrification. In contrast, denaturing gradient gel electrophoresis analysis of crenarchaeal 16S rRNA and crenarchaeal amoA genes provided strong evidence of changes in community structure of active archaeal ammonia oxidizers. Community structure changes were similar during incubation at different temperatures and much of the activity was due to a group of non-thermophilic crenarchaea associated with subsurface and marine environments, rather than soil. The findings suggest a role for crenarchaea in soil nitrification and that further information is required on their biogeography. [source] Pseudomonas community structure and antagonistic potential in the rhizosphere: insights gained by combining phylogenetic and functional gene-based analysesENVIRONMENTAL MICROBIOLOGY, Issue 9 2007Rodrigo Costa Summary The Pseudomonas community structure and antagonistic potential in the rhizospheres of strawberry and oilseed rape (host plants of the fungal phytopathogen Verticillium dahliae) were assessed. The use of a new PCR-DGGE system, designed to target Pseudomonas -specific gacA gene fragments in environmental DNA, circumvented common biases of 16S rRNA gene-based DGGE analyses and proved to be a reliable tool to unravel the diversity of uncultured Pseudomonas in bulk and rhizosphere soils. Pseudomonas -specific gacA fingerprints of total-community (TC) rhizosphere DNA were surprisingly diverse, plant-specific and differed markedly from those of the corresponding bulk soils. By combining multiple culture-dependent and independent surveys, a group of Pseudomonas isolates antagonistic towards V. dahliae was shown to be genotypically conserved, to carry the phlD biosynthetic locus (involved in the biosynthesis of 2,4-diacetylphloroglucinol , 2,4-DAPG), and to correspond to a dominant and highly frequent Pseudomonas population in the rhizosphere of field-grown strawberries planted at three sites in Germany which have different land use histories. This population belongs to the Pseudomonas fluorescens phylogenetic lineage and showed closest relatedness to P. fluorescens strain F113 (97% gacA gene sequence identity in 492-bp sequences), a biocontrol agent and 2,4-DAPG producer. Partial gacA gene sequences derived from isolates, clones of the strawberry rhizosphere and DGGE bands retrieved in this study represent previously undescribed Pseudomonas gacA gene clusters as revealed by phylogenetic analysis. [source] Molecular characterization of sulfate-reducing bacteria in a New England salt marshENVIRONMENTAL MICROBIOLOGY, Issue 8 2005Michele Bahr Summary Sulfate reduction, mediated by sulfate-reducing bacteria (SRB), is the dominant remineralization pathway in sediments of New England salt marshes. High sulfate reduction rates are associated with the rhizosphere of Spartina alterniflora when plants elongate aboveground. The growth process concurrently produces significant amounts of new rhizome material belowground and the plants leak dissolved organic compounds. This study investigated the diversity of SRB in a salt marsh over an annual growth cycle of S. alterniflora by exploring the diversity of a functional gene, dissimilatory sulfite reductase (dsrAB). Because the dsrAB gene is a key gene in the anaerobic sulfate-respiration pathway, it allows the identification of microorganisms responsible for sulfate reduction. Conserved dsrAB primers in polymerase chain reaction (PCR) generated full-length dsrAB amplicons for cloning and DNA sequence analysis. Nearly 80% of 380 clone sequences were similar to genes from Desulfosarcina and Desulfobacterium species within Desulfobacteraceae. This reinforces the hypothesis that complete oxidizers with high substrate versatility dominate the marsh. However, the phylotypes formed several clades that were distinct from cultured representatives, indicating a greater diversity of SRB than previously appreciated. Several dsrAB sequences were related to homologues from Gram-positive, thermophilic and non-thermophilic Desulfotomaculum species. One dsrAB lineage formed a sister group to cultured members of the delta-proteobacterial group Syntrophobacteraceae. A deeply branching dsrAB lineage was not affiliated with genes from any cultured SRB. The sequence data from this study will allow for the design of probes or primers that can quantitatively assess the diverse range of sulfate reducers present in the environment. [source] Non-functional immunoglobulin G transcripts in a case of hyper-immunoglobulin M syndrome similar to type 4IMMUNOLOGY, Issue 2 2004John M. Darlow Summary 86% of immunoglobulin G (IgG) heavy-chain gene transcripts were found to be non-functional in the peripheral blood B cells of a patient initially diagnosed with common variable immunodeficiency, who later developed raised IgM, whereas no non-functionally rearranged transcripts were found in the cells of seven healthy control subjects. All the patient's IgM heavy-chain and , light-chain transcripts were functional, suggesting that either non-functional rearrangements were being selectively class-switched to IgG, or that receptor editing was rendering genes non-functional after class-switching. The functional ,-chain sequences showed a normal rate of somatic hypermutation while non-functional sequences contained few somatic mutations, suggesting that most came from cells that had no functional gene and therefore were not receiving signals for hypermutation. However, apoptosis of peripheral blood lymphocytes was not impaired. No defects have been found in any of the genes currently known to be responsible for hyper-IgM syndrome but the phenotype fits best to type 4. [source] Analysis of a late gene, orf101 from Helicoverpa armigera single nucleocapsid nucleopolyhedrovirusINSECT SCIENCE, Issue 5 2005SHI-HENG AN Abstract Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus open reading frame 101 (ha101) is 762 nts in length and encodes a 254 amino acid peptide with predicted 29 kDa molecular weight. The homologues of ha101 were explored using BLASTP searching tool in the updated GenBank/EMBL and SWISS-PROT databases. The results showed that the homologues of ha101 were present in all the completely sequenced lepidopteran nucleopolyhedroviruses and granuloviruses, suggesting that ha101 might be a functional gene associated with their lepidopteran hosts. Sequence alignment of ha101 and its homologues revealed that 10 amino acids were completely conserved. RT-PCR analysis of ha101 manifested that the transcript of ha101 was first detected at 24 hpi and remained detectable at up to 122 hpi, suggesting that ha101 was transcribed during late stages of infection. Ha101 was expressed using Bac to Bac system in Tn5B-1-4 cells. The product of ha101 expressed in Tn5B-1-4 cells was approximately 29 kDa, consistent with the predicted molecular weight, and the results were confirmed by western blot analysis. The subcellular localization indicated that ha101 was aggregated along nuclear envelope during the early stages of infection and spread out to the entire nucleus including virogenic stroma in late stages of infection, suggesting that ha101 may play a specific role in virion assembly process or virogenic stroma arrangement. [source] Knockin Animal Models of Inherited Arrhythmogenic Diseases: What Have We Learned From Them?JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 10 2007KATHY M NILLES B.S. Mouse models are becoming an increasingly accepted method of studying human diseases. Knockin and knockout techniques have several advantages over traditional transgenic overexpression, and the versatility of the knockin mouse allows the study of both gain of function mutations through targeted mutagenesis, as well as the replacement of one gene by another functional gene. Here, we will review the methods available to generate knockin mice; provide an overview of the techniques used to study electrophysiology in the mice at the cellular, organ, and whole animal level; and highlight knockin mice that have implications for inherited arrhythmias. Specifically, we will focus on models that used knockin mice to clarify gene expression, identify similarities and differences between related genes, and model human arrhythmia syndromes. Our goal is to provide the reader with a general understanding of studies done on knockin mouse models of inherited arrhythmias as well as ideas for future directions. [source] A New Farnesyl Diphosphate Synthase Gene from Taxus media Rehder: Cloning, Characterization and Functional ComplementationJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 6 2006Zhi-Hua Liao Abstract Farnesyl diphosphate synthase (FPS; EC 2.5.1.10) catalyzes the production of 15-carbon farnesyl diphosphate which is a branch-point intermediate for many terpenoids. This reaction is considered to be a rate-limiting step in terpenoid biosynthesis. Here we report for the first time the cloning of a new full-length cDNA encoding farnesyl diphosphate synthase from a gymnosperm plant species, Taxus media Rehder, designated as TmFPS1. The full-length cDNA of TmFPS1 (GenBank accession number: AY461811) was 1 464 bp with a 1 056-bp open reading frame encoding a 351-amino acid polypeptide with a calculated molecular weight of 40.3 kDa and a theoretical pI of 5.07. Bioinformatic analysis revealed that TmFPS1 contained all five conserved domains of prenyltransferases, and showed homology to other FPSs of plant origin. Phylogenetic analysis showed that farnesyl diphosphate synthases can be divided into two groups: one of prokaryotic origin and the other of eukaryotic origin. TmFPS1 was grouped with FPSs of plant origin. Homology-based structural modeling showed that TmFPS1 had the typical spatial structure of FPS, whose most prominent structural feature is the arrangement of 13 core helices around a large central cavity in which the catalytic reaction takes place. Our bioinformatic analysis strongly suggests that TmFPS1 is a functional gene. Southern blot analysis revealed that TmFPS1 belongs to a small FPS gene family in T. media. Northern blot analysis indicated that TmFPS1 is expressed in all tested tissues, including the needles, stems and roots of T. media. Subsequently, functional complementation with TmFPS1 in a FPS-deficient mutant yeast demonstrated that TmFPS1 did encode farnesyl diphosphate synthase, which rescued the yeast mutant. This study will be helpful in future investigations aiming at understanding the detailed role of FPS in terpenoid biosynthesis flux control at the molecular genetic level. (Managing editor: Wei Wang) [source] Methionine sulphoxide reductase is an important antioxidant enzyme in the gastric pathogen Helicobacter pyloriMOLECULAR MICROBIOLOGY, Issue 5 2004Praveen Alamuri Summary The ability of Helicobacter pylori to colonize the stomach requires that it combat oxidative stress responses imposed by the host. The role of methionine sulfoxide reductase (Msr), a methionine repair enzyme, in H. pylori stress resistance was evaluated by a mutant analysis approach. An msr mutant strain lacked immunologically detectable sulphoxide reductase protein and also showed no enzyme activity when provided with oxidized methionines as substrates. The mutant strain showed diminished growth compared to the parent strain in the presence of chemical oxidants, and showed rapid viability loss when exposed to oxidizing conditions. The stress resistance and enzyme activity could be recovered by complementing the mutant with a functional copy of the msr gene. Upon fractionation of parent strain and the complemented mutant cells into membranes and cytoplasmic proteins, most of the immunologically detectable Msr was localized to the membrane, and this fraction contained all of the Msr activity. Qualitative detection of the whole cell protein pattern using 2,4-dinitro phenyl hydrazine (DNPH) showed a far greater number of oxidized protein species in the mutant than in the parent strain when the cells were subjected to oxygen, peroxide or s-nitrosoglutathione (GSNO) induced stress. Importantly, no oxidized proteins were discerned in either strain upon incubation in anaerobic conditions. A mutant strain that synthesized a truncated Msr (corresponding to the MsrA domain) was slightly more resistant to oxidative stress than the msr strain. Mouse colonization studies showed Msr is an important colonization factor, especially for effective longer-term (14 and 21 days) colonization. Complementation of the mutant msr strain by chromosomal insertion of a functional gene restored mouse colonization ability. [source] Prenatal diagnosis of 21-hydroxylase deficiency caused by gene conversion and rearrangements: pitfalls and molecular diagnostic solutionsPRENATAL DIAGNOSIS, Issue 13 2002Rong Mao Abstract Objectives The present paper reports the prenatal diagnosis of congenital adrenal hyperplasia (CAH) in two cases of 21-hydroxylase deficiency. DNA diagnostic errors can be caused by the presence of the highly homologous 21-hydroxylase pseudogene, CYP21P, adjacent to the functional gene, CYP21. The present paper details how complex gene conversions and rearrangements between the CYP21 and CYP21P pose unique complications for prenatal diagnosis. Methods Analysis of eight common mutations in the 21-hydroxylase gene as well as deletion of the entire gene is accomplished using polymerase chin reaction (PCR) followed by amplified created restriction site (ACRS) or allele-specific oligohybridization (ASO) and Southern blot followed by hybridization to a CYP21-specific probe. Linkage analysis was performed using microsatellite markers flanking the CYP21 gene. Results The direct mutation detection assay indicated a complicated gene conversion and rearrangement in the probands of both families. Interpretation of these rearrangements made it difficult to determine whether or not the fetuses would be affected with CAH. Linkage studies revealed that each fetus had inherited both parental disease chromosomes and was therefore predicted to be affected with CAH. Conclusion As observed in the two reported cases, direct DNA analysis may provide limited information due to gene conversion or rearrangement between the CYP21 and CYP21P genes. These cases suggest that direct mutation detection should be supported by linkage analysis, whenever possible, to provide more comprehensive information for the family. Copyright © 2002 John Wiley & Sons, Ltd. [source] SNP Discovery and Haplotype Analysis in the Segmentally Duplicated DRD5 Coding RegionANNALS OF HUMAN GENETICS, Issue 3 2009Donna J. E. Housley Summary The dopamine receptor 5 gene (DRD5) holds much promise as a candidate locus for contributing to neuropsychiatric disorders and other diseases influenced by the dopaminergic system, as well as having potential to affect normal behavioral variation. However, detailed analyses of this gene have been complicated by its location within a segmentally duplicated chromosomal region. Microsatellites and SNPs upstream from the coding region have been used for association studies, but we find, using bioinformatics resources, that these markers all lie within a previously unrecognized second segmental duplication (SD). In order to accurately analyze the DRD5 locus for polymorphisms in the absence of contaminating pseudogene sequences, we developed a fast and reliable method for sequence analysis and genotyping within the DRD5 coding region. We employed restriction enzyme digestion of genomic DNA to eliminate the pseudogenes prior to PCR amplification of the functional gene. This approach allowed us to determine the DRD5 haplotype structure using 31 trios and to reveal additional rare variants in 171 unrelated individuals. We clarify the inconsistencies and errors of the recorded SNPs in dbSNP and HapMap and illustrate the importance of using caution when choosing SNPs in regions of suspected duplications. The simple and relatively inexpensive method presented herein allows for convenient analysis of sequence variation in DRD5 and can be easily adapted to other duplicated genomic regions in order to obtain good quality sequence data. [source] GATA factors as key regulatory molecules in the development of Drosophila endodermDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 9 2005Ryutaro Murakami Essential roles for GATA factors in the development of endoderm have been reported in various animals. A Drosophila GATA factor gene, serpent (srp, dGATAb, ABF), is expressed in the prospective endoderm, and loss of srp activity causes transformation of the prospective endoderm into ectodermal foregut and hindgut, indicating that srp acts as a selector gene to specify the developmental fate of the endoderm. While srp is expressed in the endoderm only during early stages, it activates a subsequent GATA factor gene, dGATAe, and the latter continues to be expressed specifically in the endoderm throughout life. dGATAe activates various functional genes in the differentiated endodermal midgut. An analogous mode of regulation has been reported in Caenorhabditis elegans, in which a pair of GATA genes, end-1/3, specifies endodermal fate, and a downstream pair of GATA genes, elt-2/7, activates genes in the differentiated endoderm. Functional homology of GATA genes in nature is apparently extendable to vertebrates, because endodermal GATA genes of C. elegans and Drosophila induce endoderm development in Xenopus ectoderm. These findings strongly imply evolutionary conservation of the roles of GATA factors in the endoderm across the protostomes and the deuterostomes. [source] Microbial functional structure of Montastraea faveolata, an important Caribbean reef-building coral, differs between healthy and yellow-band diseased coloniesENVIRONMENTAL MICROBIOLOGY, Issue 2 2010Nikole E. Kimes Summary A functional gene array (FGA), GeoChip 2.0, was used to assess the biogeochemical cycling potential of microbial communities associated with healthy and Caribbean yellow band diseased (YBD) Montastraea faveolata. Over 6700 genes were detected, providing evidence that the coral microbiome contains a diverse community of archaea, bacteria and fungi capable of fulfilling numerous functional niches. These included carbon, nitrogen and sulfur cycling, metal homeostasis and resistance, and xenobiotic contaminant degradation. A significant difference in functional structure was found between healthy and YBD M. faveolata colonies and those differences were specific to the physical niche examined. In the surface mucopolysaccharide layer (SML), only two of 31 functional categories investigated, cellulose degradation and nitrification, revealed significant differences, implying a very specific change in microbial functional potential. Coral tissue slurry, on the other hand, revealed significant changes in 10 of the 31 categories, suggesting a more generalized shift in functional potential involving various aspects of nutrient cycling, metal transformations and contaminant degradation. This study is the first broad screening of functional genes in coral-associated microbial communities and provides insights regarding their biogeochemical cycling capacity in healthy and diseased states. [source] Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307)ENVIRONMENTAL MICROBIOLOGY, Issue 1 2009Gordon Webster Summary The Porcupine Seabight Challenger Mound is the first carbonate mound to be drilled (,270 m) and analyzed in detail microbiologically and biogeochemically. Two mound sites and a non-mound Reference site were analyzed with a range of molecular techniques [catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH), quantitative PCR (16S rRNA and functional genes, dsrA and mcrA), and 16S rRNA gene PCR-DGGE] to assess prokaryotic diversity, and this was compared with the distribution of total and culturable cell counts, radiotracer activity measurements and geochemistry. There was a significant and active prokaryotic community both within and beneath the carbonate mound. Although total cell numbers at certain depths were lower than the global average for other subseafloor sediments and prokaryotic activities were relatively low (iron and sulfate reduction, acetate oxidation, methanogenesis) they were significantly enhanced compared with the Reference site. In addition, there was some stimulation of prokaryotic activity in the deepest sediments (Miocene, > 10 Ma) including potential for anaerobic oxidation of methane activity below the mound base. Both Bacteria and Archaea were present, with neither dominant, and these were related to sequences commonly found in other subseafloor sediments. With an estimate of some 1600 mounds in the Porcupine Basin alone, carbonate mounds may represent a significant prokaryotic subseafloor habitat. [source] A molecular biological protocol to distinguish potentially human pathogenic Stenotrophomonas maltophilia from plant-associated Stenotrophomonas rhizophilaENVIRONMENTAL MICROBIOLOGY, Issue 11 2005Kathrin Ribbeck-Busch Summary In recent years, the importance of the Gram-negative bacterium Stenotrophomonas as an opportunistic pathogen as well as in biotechnology has increased. The aim of the present study was to develop new methods for distinguishing between strains closely related to the potentially human pathogenic Stenotrophomonas maltophilia and those closely related to the plant-associated Stenotrophomonas rhizophila. To accomplish this, 58 strains were characterized by 16S rDNA sequencing and amplified ribosomal DNA restriction analysis (ARDRA), and the occurrence of specific functional genes. Based on 16S rDNA sequences, an ARDRA protocol was developed which allowed differentiation between strains of the S. maltophilia and the S. rhizophila group. As it was known that only salt-treated cells of S. rhizophila were able to synthesize the compatible solute glucosylglycerol (GG), the ggpS gene responsible for GG synthesis was used for differentiation between both species and it was confirmed that it only occurred in S. rhizophila strains. As a further genetic marker the smeD gene, which is part of the genes coding for the multidrug efflux pump SmeDEF from S. maltophilia, was used. Based on the results we propose a combination of fingerprinting techniques using the 16S rDNA and the functional genes ggpS and smeD to distinguish both Stenotrophomonas species. [source] Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environmentsENVIRONMENTAL MICROBIOLOGY, Issue 1 2005Olivier Nercessian Summary To contribute to the identification of methanogens, methanotrophs and sulfate-reducing bacteria (SRB) in microbial communities from the 13°N (East Pacific Rise) and Rainbow (Mid-Atlantic Ridge) hydrothermal vent fields, we investigated the diversity of mcrA, pmoA and dsrAB genes sequences. Clone libraries were obtained using DNA isolated from fragments of diffuse vents, sediment and in situ samplers. The clones were categorized by restriction fragment length polymorphism, and representatives of each group were sequenced. Sequences were related to that of hyperthermophilic (order Methanopyrales and family Methanocaldococcaceae), thermophilic and mesophilic (family Methanococcaceae) methanogens, thermophilic (proposed genus ,Methylothermus') and mesophilic type I methanotrophs, and hyperthermophilic (order Archaeoglobales), thermophilic (order Thermodesulfobacteriales) and mesophilic (family Desulfobulbaceae) SRB. Several of the obtained sequences were distantly related to the genes of cultivated organisms, providing evidence of the existence of novel lineages in the three functional groups. This study provides for the first time an insight into the diversity of several functional genes of deep-sea hydrothermal system microorganisms. [source] Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bogFEMS MICROBIOLOGY ECOLOGY, Issue 1 2010Thomas E. Freitag Abstract The relationship between biogeochemical process rates and microbial functional activity was investigated by analysis of the transcriptional dynamics of the key functional genes for methanogenesis (methyl coenzyme M reductase; mcrA) and methane oxidation (particulate methane monooxygenase; pmoA) and in situ methane flux at two peat soil field sites with contrasting net methane-emitting and -oxidizing characteristics. qPCR was used to quantify the abundances of mcrA and pmoA genes and transcripts at two soil depths. Total methanogen and methanotroph transcriptional dynamics, calculated from mcrA and pmoA gene : transcript abundance ratios, were similar at both sites and depths. However, a linear relationship was demonstrated between surface mcrA and pmoA transcript dynamics and surface flux rates at the methane-emitting and methane-oxidizing sites, respectively. Results indicate that methanotroph activity was at least partially substrate-limited at the methane-emitting site and by other factors at the methane-oxidizing site. Soil depth also contributed to the control of surface methane fluxes, but to a lesser extent. Small differences in the soil water content may have contributed to differences in methanogen and methanotroph activities. This study therefore provides a first insight into the regulation of in situ, field-level surface CH4 flux at the molecular level by an accurate reflection of gene : transcript abundance ratios for the key genes in methane generation and consumption. [source] Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probingFEMS MICROBIOLOGY ECOLOGY, Issue 1 2007Aurélie Cébron Abstract A considerable amount of methane produced during decomposition of landfill waste can be oxidized in landfill cover soil by methane-oxidizing bacteria (methanotrophs) thus reducing greenhouse gas emissions to the atmosphere. The identity of active methanotrophs in Roscommon landfill cover soil, a slightly acidic peat soil, was assessed by DNA-stable isotope probing (SIP). Landfill cover soil slurries were incubated with 13C-labelled methane and under either nutrient-rich nitrate mineral salt medium or water. The identity of active methanotrophs was revealed by analysis of 13C-labelled DNA fractions. The diversity of functional genes (pmoA and mmoX) and 16S rRNA genes was analyzed using clone libraries, microarrays and denaturing gradient gel electrophoresis. 16S rRNA gene analysis revealed that the cover soil was mainly dominated by Type II methanotrophs closely related to the genera Methylocella and Methylocapsa and to Methylocystis species. These results were supported by analysis of mmoX genes in 13C-DNA. Analysis of pmoA gene diversity indicated that a significant proportion of active bacteria were also closely related to the Type I methanotrophs, Methylobacter and Methylomonas species. Environmental conditions in the slightly acidic peat soil from Roscommon landfill cover allow establishment of both Type I and Type II methanotrophs. [source] Prevalence and diversity of insertion sequences in the genome of Bacillus thuringiensis YBT-1520 and comparison with other Bacillus cereus group membersFEMS MICROBIOLOGY LETTERS, Issue 1 2010Ning Qiu Abstract Members of the Bacillus cereus group are closely related bacteria that exhibit highly divergent pathogenic properties. Sequencing of Bacillus thuringiensis ssp. kurstaki strain YBT-1520 revealed an increased number of insertion sequences (ISs) compared with those of the published B. cereus group genomes. Although some of these ISs have been observed and summarized in B. thuringiensis previously, a genomic characterization of their content is required to reveal their distribution and evolution. The result shows that the larger number of transposase coding genes on YBT-1520 chromosome is mainly caused by the amplification of IS231C, IS232A and ISBth166. Some functional genes have been disrupted through the insertion of ISs, preferentially IS231C. By comparing the Southern hybridization profiles of different B. thuringiensis strains, the existence of ISBth166 was mainly found in serovar kurstaki and the recent expansion of IS231C between different kurstaki isolates was suggested. In addition to revealing the ISs profile in YBT-1520 as well as the comparison in the B. cereus group, this study will contribute to further comparative analyses of multiple B. thuringiensis strains aimed at understanding the IS-mediated genomic rearrangements among them. [source] Complete physical map and gene content of the human NF1 tumor suppressor region in human and mouseGENES, CHROMOSOMES AND CANCER, Issue 2 2003Dieter E. Jenne Duplicon-mediated microdeletions around the NF1 gene are frequently associated with a severe form of neurofibromatosis type I in a subgroup of patients who show an earlier onset of cutaneous neurofibromas, dysmorphic facial features, and lower IQ values. To clarify the discrepancies between published maps of the NF1 tumor-suppressor gene region as well as the length of gaps in these assemblies and to validate the recently described tandem duplication of the human NF1 locus, we assembled a contiguous high-density map of BAC and PAC clones from different genomic libraries. Although two WI-12393,derived low-copy fragments are known to occur at the proximal and distal boundaries of the 1.5-Mb segment that is usually deleted in NF1 microdeletion patients, we identified an additional WI-12393,related segment between the MGC13061 and the NF1 gene, which appears to trigger interstitial deletions of smaller size as observed in two patients. Moreover, we completed the genomic organization and cDNA structure of all functional genes, CYTOR4, FLJ12735, FLJ22729, CENTA2, MGC13061, NF1, OMG, EVI2B, EVI2A, KIAA1821, MGC11316, HCA66, KIAA0160, and WI-12393, from this region. A comparison of the human map to the orthologous region on mouse chromosome 11 revealed significant differences in the number and arrangement of genes, indicating that many chromosomal breaks with partial duplications, inversions, and deletions occurred predominantly in the primate lineage. © 2003 Wiley-Liss, Inc. [source] Regulation of immunoglobulin heavy-chain gene rearrangementsIMMUNOLOGICAL REVIEWS, Issue 1 2004Dipanjan Chowdhury Summary:, Regulated assembly of antigen receptor gene segments to produce functional genes is a hallmark of B- and T-lymphocyte development. The immunoglobulin heavy-chain (IgH) and T-cell receptor ,-chain genes rearrange first in B and T lineages, respectively. Both loci require two recombination events to assemble functional genes; D-to-J recombination occurs first followed by V-to-DJ recombination. Despite similarities in overall rearrangement patterns, each locus has unique regulatory features. Here, we review the characteristics of IgH gene rearrangements such as developmental timing, deletion versus inversion, DH gene segment utilization, ordered recombination of VH gene segments, and feedback inhibition of rearrangement in pre-B cells. We summarize chromatin structural features of the locus before and during recombination and, wherever possible, incorporate these into working hypotheses for understanding regulation of IgH gene recombination. The picture emerges that the IgH locus is activated in discrete, independently regulated domains. A domain encompassing DH and JH gene segments is activated first, within which recombination is initiated. VH genes are activated subsequently and, in part, by interleukin-7. These observations lead to a model for feedback inhibition of IgH rearrangements. [source] Partial deletions of the W chromosome due to reciprocal translocation in the silkworm Bombyx moriINSECT MOLECULAR BIOLOGY, Issue 4 2005H. Abe Abstract In the silkworm, Bombyx mori (female, ZW; male, ZZ), femaleness is determined by the presence of a single W chromosome, irrespective of the number of autosomes or Z chromosomes. The W chromosome is devoid of functional genes, except the putative female-determining gene (Fem). However, there are strains in which chromosomal fragments containing autosomal markers have been translocated on to W. In this study, we analysed the W chromosomal regions of the Zebra-W strain (T(W;3)Ze chromosome) and the Black-egg-W strain (T(W;10)+w,2 chromosome) at the molecular level. Initially, we undertook a project to identify W-specific RAPD markers, in addition to the three already established W-specific RAPD markers (W-Kabuki, W-Samurai and W-Kamikaze). Following the screening of 3648 arbitrary 10-mer primers, we obtained nine W-specific RAPD marker sequences (W-Bonsai, W-Mikan, W-Musashi, W-Rikishi, W-Sakura, W-Sasuke, W-Yukemuri-L, W-Yukemuri-S and BMC1-Kabuki), almost all of which contained the border regions of retrotransposons, namely portions of nested retrotransposons. We confirmed the presence of eleven out of twelve W-specific RAPD markers in the normal W chromosomes of twenty-five silkworm strains maintained in Japan. These results indicate that the W chromosomes of the strains in Japan are almost identical in type. The Zebra-W strain (T(W;3)Ze chromosome) lacked the W-Samurai and W-Mikan RAPD markers and the Black-egg-W strain (T(W;10)+w,2 chromosome) lacked the W-Mikan RAPD marker. These results strongly indicate that the regions containing the W-Samurai and W-Mikan RAPD markers or the W-Mikan RAPD marker were deleted in the T(W;3)Ze and T(W;10)+w,2 chromosomes, respectively, due to reciprocal translocation between the W chromosome and the autosome. This deletion apparently does not affect the expression of Fem; therefore, this deleted region of the W chromosome does not contain the putative Fem gene. [source] Induced and repressed genes after irradiation sensitizing by pentoxyphylline,INTERNATIONAL JOURNAL OF CANCER, Issue 6 2007Waldemar Waldeck Abstract Aim in cancer therapy is to increase the therapeutic ratio eliminating the disease while minimizing toxicity to normal tissues. Radiation therapy is a main component in targeting cancer. Radiosensitizing agents like pentoxyphylline (PTX) have been evaluated to improve radiotherapy. Commonly, cells respond to radiation by the activation of specific early and late response genes as well as by inhibition of genes, which are expressed under normal conditions. A display of the genetic distinctions at the level of transcription is given here to characterize the molecular events underlying the radiosensitizing mechanisms. The method of suppression subtractive hybridization allows the visualization of both induced and repressed genes in irradiated cells compared with cells sensitized immediately after irradiation. The genes were isolated by cDNA-cloning, differential analysis and sequence similarity search. Genes involved in protein synthesis, metabolism, proteolysis and transcriptional regulation were detected. It is important that genes like KIAA280, which were only known as unidentified EST sequences before without function, but inaccessible by array technology were recovered as functional genes. Database searches for PTX-induced genes detected a human mRNA completely unknown. In case of suppressed genes, we detected several mRNAs; one thereof shows homology to a hypothetical protein possibly involved in signal transduction. A further mRNA encodes the protein BM036 supposed to associate with the E2F transcription factor. A hypothetical protein H41 was detected, which may repress the Her-2/neu receptor influencing breast cancer, gliomas and prostate tumors. Radiation combined with PTX may lead to a better prognosis by down regulation of the Her-2/neu, which will be proven by clinical studies in the near future. © 2006 Wiley-Liss, Inc. [source] Microbial community analysis at crude oil-contaminated soils targeting the 16S ribosomal RNA, xylM, C23O, and bcr genesJOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2009Y. Higashioka Abstract Aims:, The analyses targeting multiple functional genes were performed on the samples of crude oil-contaminated soil, to investigate community structures of organisms involved in monoaromatic hydrocarbon degradation. Methods and Results:, Environmental samples were obtained from two sites that were contaminated with different components of crude oil. The analysis on 16S rRNA gene revealed that bacterial community structures were clearly different between the two sites. The cloning analyses were performed by using primers specific for the catabolic genes involved in the aerobic or anaerobic degradation of monoaromatic hydrocarbons, i.e. xylene monooxygenase (xylM), catechol 2,3-dioxygenase (C23O), and benzoyl-CoA reductase (bcr) genes. From the result of xylM gene, it was suggested that there are lineages specific to the respective sites, reflecting the differences of sampling sites. In the analysis of the C23O gene, the results obtained with two primer sets were distinct from each other. A comparison of these suggested that catabolic types of major bacteria carrying this gene were different between the two sites. As for the bcr gene, no amplicon was obtained from one sample. Phylogenetic analysis revealed that the sequences obtained from the other sample were distinct from the known sequences. Conclusions:, The differences between the two sites were demonstrated in the analyses of all tested genes. As for aerobic cleavage of the aromatic ring, it was also suggested that analysis using two primer sets provide more detailed information about microbial communities in the contaminated site. Significance and Impact of the Study:, The present study demonstrated that analysis targeting multiple functional genes as molecular markers is practical to examine microbial community in crude oil-contaminated environments. [source] The rough edges of the conservation genetics paradigm for plantsJOURNAL OF ECOLOGY, Issue 6 2006N. J. OUBORG Summary 1Small and isolated populations of species are susceptible to loss of genetic diversity, owing to random genetic drift and inbreeding. This loss of diversity may reduce the evolutionary potential to adapt to changing environments, and may cause immediate loss of fitness (cf. inbreeding depression). Together with other population size-dependent stochastic processes, this may lead to increased probabilities of population extinction. 2This set of processes and theories forms the core of conservation genetics and has developed into the conservation genetics paradigm. Many empirical studies have concentrated on the relationship between population size and genetic diversity, and in many cases evidence was found that small populations of plants do indeed have lower levels of genetic diversity and increased homozygosity. Although less empirical attention has been given to the relationship between low genetic diversity, fitness and, in particular, evolutionary potential, the paradigm is now widely accepted. 3Here we present five areas of the paradigm which could be refined, i.e. the ,rough' edges of the conservation genetics paradigm. 4Treating population size and isolation not as interchangeable parameters but as separate parameters affecting population genetics in different ways could allow more accurate predictions of the effects of landscape fragmentation on the genetic diversity and viability of populations. 5There is evidence that inbreeding depression may be a genotype-specific phenomenon, rather than a population parameter. This sheds new light on the link between population inbreeding depression and the expected increased probability of extinction. 6Modern eco-genomics offers the opportunity to study the population genetics of functional genes, to the extent that the role of selection can be distinguished from the effects of drift, and allowing improved insights into the effects of loss of genetic diversity on evolutionary potential. 7Incorporating multispecies considerations may result in the generally accepted notion that small populations are at peril being called into question. For instance, small populations may be less capable of sustaining parasites or herbivores. 8Comparative studies of endangered, common and invasive species may be a valuable approach to developing conservation biology from a phenomenological case study discipline into one investigating the general principles of what sustains biodiversity. 9The issues discussed set an agenda for further research within conservation genetics and may lead to a further refinement of our understanding and prediction of the genetic effects of habitat fragmentation. They also underline the need to integrate ecological and genetic approaches to the conservation of biodiversity, rather than regarding them as opposites. [source] Advances in Research on Genetically Engineered Plants for Metal ResistanceJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 11 2006Ri-Qing Zhang Abstract The engineering application of natural hyperaccumulators in removing or inactivating metal pollutants from soil and surface water in field trials mostly presents the insurmountable shortcoming of low efficiency owing to their little biomass and slow growth. Based on further understanding of the molecular mechanism of metal uptake, translocation, and also the separation, identification, and cloning of some related functional genes, this article highlights and summarizes in detail the advances in research on transgenic techniques, such as Agrobacterium tumefaciens -mediated transformation and particle bombardment, in breeding of plants for metal resistance and accumulation, and points out that deepening the development of transgenic plants is one of the efficient approaches to improving phytoremediation efficiency of metal-contaminated environments. From the viewpoint of sustainable development, governments should strengthen support to the development of genetic engineering for metal resistance and accumulation in plants. (Managing editor: Li-Hui Zhao) [source] Genetic diversity assessment of anoxygenic photosynthetic bacteria by distance-based grouping analysis of pufM sequencesLETTERS IN APPLIED MICROBIOLOGY, Issue 6 2007Y.H. Zeng Abstract Aim:, To assess how completely the diversity of anoxygenic phototrophic bacteria (APB) was sampled in natural environments. Methods and Results:, All nucleotide sequences of the APB marker gene pufM from cultures and environmental clones were retrieved from the GenBank database. A set of cutoff values (sequence distances 0·06, 0·15 and 0·48 for species, genus, and (sub)phylum levels, respectively) was established using a distance-based grouping program. Analysis of the environmental clones revealed that current efforts on APB isolation and sampling in natural environments are largely inadequate. Analysis of the average distance between each identified genus and an uncultured environmental pufM sequence indicated that the majority of cultured APB genera lack environmental representatives. Conclusions:, The distance-based grouping method is fast and efficient for bulk functional gene sequences analysis. The results clearly show that we are at a relatively early stage in sampling the global richness of APB species. Periodical assessment will undoubtedly facilitate in-depth analysis of potential biogeographical distribution pattern of APB. Significance and Impact of the Study:, This is the first attempt to assess the present understanding of APB diversity in natural environments. The method used is also useful for assessing the diversity of other functional genes. [source] EST-derived polymorphic microsatellites from cultivated strawberry (Fragaria×ananassa) are useful for diversity studies and varietal identification among Fragaria speciesMOLECULAR ECOLOGY RESOURCES, Issue 4 2006D. J. GIL-ARIZA Abstract Microsatellite or simple sequence repeat markers derived from expressed sequence tags (ESTs) provide genetic markers within potentially functional genes, which could be very useful for breeding programs. To date, the development of microsatellite markers in the genus Fragaria has focused mainly on Fragaria vesca. However, most of the interests of breeding programs relate to specific characteristics of cultivated strawberry. Here, we describe a set of 10 EST-derived microsatellites from Fragaria × ananassa. These markers showed high levels of polymorphism within strawberry cultivars and among different Fragaria species, indicating their potential for genetic studies not only on strawberry but also in other species within the genus. [source] Two different CC-NBS-LRR genes are required for Lr10 -mediated leaf rust resistance in tetraploid and hexaploid wheatTHE PLANT JOURNAL, Issue 6 2009Caroline Loutre Summary Comparative study of disease resistance genes in crop plants and their relatives provides insight on resistance gene function, evolution and diversity. Here, we studied the allelic diversity of the Lr10 leaf rust resistance gene, a CC-NBS-LRR coding gene originally isolated from hexaploid wheat, in 20 diploid and tetraploid wheat lines. Besides a gene in the tetraploid wheat variety ,Altar' that is identical to the hexaploid wheat Lr10, two additional, functional resistance alleles showing sequence diversity were identified by virus-induced gene silencing in tetraploid wheat lines. In contrast to most described NBS-LRR proteins, the N-terminal CC domain of LR10 was found to be under strong diversifying selection. A second NBS-LRR gene at the Lr10 locus, RGA2, was shown through silencing to be essential for Lr10 function. Interestingly, RGA2 showed much less sequence diversity than Lr10. These data demonstrate allelic diversity of functional genes at the Lr10 locus in tetraploid wheat, and these new genes can now be analyzed for agronomic relevance. Lr10 -based resistance is highly unusual both in its dependence on two, only distantly, related CC-NBS-LRR proteins, as well as in the pattern of diversifying selection in the N-terminal domain. This indicates a new and complex molecular mechanism of pathogen detection and signal transduction. [source] Local DNA features affect RNA-directed transcriptional gene silencing and DNA methylationTHE PLANT JOURNAL, Issue 1 2008Ute Fischer Summary Transcription of a nopaline synthase promoter (pNOS) inverted repeat provides an RNA signal that can trigger transcriptional gene silencing and methylation of pNOS promoters in trans. The degree of silencing is influenced by the local DNA features close to the target promoter integration sites. Among 26 transgenic Arabidopsis thaliana lines harbouring single copies of a T-DNA including a pNOS- NPTII reporter gene at different chromosomal loci, NPTII RNA levels showed limited variation. When challenged by the silencer transgene providing the pNOS RNA signal, reduction of the NPTII RNA levels in the F1 generation varied by more than 100-fold, ranging from no reduction to reduction to <1% of the non-silenced level. Silencing was generally correlated with proportional DNA methylation in the pNOS region, except for one target transgene showing substantial DNA methylation without adequate silencing. Silencing was progressive through generations. Differences in the degree of silencing among the target transgenes were transmitted at least to the F3 generation, and seemed to be influenced by transgene-flanking sequences. Apparently, close-by repeats promoted, whereas close-by functional genes diminished, the response to the silencing signal. [source] Empirical tests for ecological exchangeabilityANIMAL CONSERVATION, Issue 3 2005Russell B. Rader The concept of ecological exchangeability, together with genetic exchangeability, is central to both the Cohesion Species Concept as well as to some definitions of Evolutionarily Significant Units. While there are well-established criteria for measuring genetic exchangeability, the concept of ecological exchangeability has generated considerable confusion. We describe a procedure that uses the complementary strengths, while recognising the limitations, of both molecular genetic data and ecological experiments to determine the ecological exchangeability of local populations within a species. This is the first synthesis of a combined approach (experiments and genetics) and the first explicit discussion of testing ecological exchangeability. Although it would be ideal to find functional genes that interact to influence quantitative traits resulting in ecological differences (e.g. growth, size, fecundity), we suggest that our current knowledge of functional markers is too limited for most species to use them to differentiate adaptively different local populations. Thus, we argue that ecological experiments using whole organisms combined with neutral markers that indicate evolutionary divergence, provide the strongest case for detecting adaptive differences among local populations. Both genetic divergence and ecological experiments provide the best information for infering ecological exchangeability. This procedure can be used to decide which local populations should be preserved to maintain intraspecific variation and to determine which populations would enhance captive-breeding programs, augment endangered local populations and could best be used to re-introduce native species into historically occupied areas. [source] |