Functional Connectivity (functional + connectivity)

Distribution by Scientific Domains


Selected Abstracts


Tana River Mangabey Use of Nonforest Areas: Functional Connectivity in a Fragmented Landscape in Kenya

BIOTROPICA, Issue 5 2010
Julie Wieczkowski
ABSTRACT Habitat loss and fragmentation is a serious threat to biodiversity. Fragment isolation can be reduced if fragments are connected, either structurally through habitat corridors or functionally if the species can move through the surrounding matrix. One-way to evaluate landscape connectivity is to observe natural movements of animals within fragmented landscapes. The Tana River mangabey (Cercocebus galeritus) is an endangered monkey endemic to fragmented forests along the lower Tana River in Kenya, and who has been observed to move through matrix between fragments. One mangabey group moved through 1 km of matrix, while another group moved through two areas of matrix. I collected behavioral and ranging data on the latter group to describe its behavior and time spent in the matrix. Utilizing data from belt transects in the matrix and forest fragments, I characterized the vegetation structure of the matrix and compared it to the forests included in each group's home range. The group spent the majority of their time eating while in the matrix, and spent an average 36.4 min in one matrix area and 100 min in the other. The matrix is generally characterized by the highest measures for a nonforest attribute and the lowest measures for forest attributes. These results suggest that forest fragments are functionally, but not structurally, connected for the mangabey; a landscape approach to conservation, therefore, should be taken for the lower Tana River. Research investigating the limitations of the mangabey's ability to use the matrix is needed. [source]


Functional connectivity with the hippocampus during successful memory formation

HIPPOCAMPUS, Issue 8 2005
Charan Ranganath
Abstract Although it is well established that the hippocampus is critical for episodic memory, little is known about how the hippocampus interacts with cortical regions during successful memory formation. Here, we used event-related functional magnetic resonance imaging (fMRI) to identify areas that exhibited differential functional connectivity with the hippocampus during processing of novel objects that were subsequently remembered or forgotten on a postscan test. Functional connectivity with the hippocampus was enhanced during successful, as compared with unsuccessful, memory formation, in a distributed network of limbic cortical areas,including perirhinal, orbitofrontal, and retrosplenial/posterior cingulate cortex,that are anatomically connected with the hippocampal formation. Increased connectivity was also observed in lateral temporal, medial parietal, and medial occipital cortex. These findings demonstrate that successful memory formation is associated with transient increases in cortico-hippocampal interaction. © 2005 Wiley-Liss, Inc. [source]


Emotional imagery: Assessing pleasure and arousal in the brain's reward circuitry

HUMAN BRAIN MAPPING, Issue 9 2010
Vincent D. Costa
Abstract Research on emotional perception and learning indicates appetitive cues engage nucleus accumbens (NAc) and medial prefrontal cortex (mPFC), whereas amygdala activity is modulated by the emotional intensity of appetitive and aversive cues. This study sought to determine patterns of functional activation and connectivity among these regions during narrative emotional imagery. Using event-related fMRI, we investigate activation of these structures when participants vividly imagine pleasant, neutral, and unpleasant scenes. Results indicate that pleasant imagery selectively activates NAc and mPFC, whereas amygdala activation was enhanced during both pleasant and unpleasant imagery. NAc and mPFC activity were each correlated with the rated pleasure of the imagined scenes, while amygdala activity was correlated with rated emotional arousal. Functional connectivity of NAc and mPFC was evident throughout imagery, regardless of hedonic content, while correlated activation of the amygdala with NAc and mPFC was specific to imagining pleasant scenes. These findings provide strong evidence that pleasurable text-driven imagery engages a core appetitive circuit, including NAc, mPFC, and the amygdala. Hum Brain Mapp, 2010. © 2010 Wiley-Liss, Inc. [source]


Two systems of resting state connectivity between the insula and cingulate cortex

HUMAN BRAIN MAPPING, Issue 9 2009
Keri S. Taylor
Abstract The insula and cingulate cortices are implicated in emotional, homeostatic/allostatic, sensorimotor, and cognitive functions. Non-human primates have specific anatomical connections between sub-divisions of the insula and cingulate. Specifically, the anterior insula projects to the pregenual anterior cingulate cortex (pACC) and the anterior and posterior mid-cingulate cortex (aMCC and pMCC); the mid-posterior insula only projects to the posterior MCC (pMCC). In humans, functional neuroimaging studies implicate the anterior insula and pre/subgenual ACC in emotional processes, the mid-posterior insula with awareness and interoception, and the MCC with environmental monitoring, response selection, and skeletomotor body orientation. Here, we tested the hypothesis that distinct resting state functional connectivity could be identified between (1) the anterior insula and pACC/aMCC; and (2) the entire insula (anterior, middle, and posterior insula) and the pMCC. Functional connectivity was assessed from resting state fMRI scans in 19 healthy volunteers using seed regions of interest in the anterior, middle, and posterior insula. Highly correlated, low-frequency oscillations (< 0.05 Hz) were identified between specific insula and cingulate subdivisions. The anterior insula was shown to be functionally connected with the pACC/aMCC and the pMCC, while the mid/posterior insula was only connected with the pMCC. These data provide evidence for a resting state anterior insula,pACC/aMCC cingulate system that may integrate interoceptive information with emotional salience to form a subjective representation of the body; and another system that includes the entire insula and MCC, likely involved in environmental monitoring, response selection, and skeletomotor body orientation. Human Brain Mapp 2009. © 2008 Wiley-Liss, Inc. [source]


Functional connectivity of default mode network components: Correlation, anticorrelation, and causality

HUMAN BRAIN MAPPING, Issue 2 2009
Lucina Q. Uddin
Abstract The default mode network (DMN), based in ventromedial prefrontal cortex (vmPFC) and posterior cingulate cortex (PCC), exhibits higher metabolic activity at rest than during performance of externally oriented cognitive tasks. Recent studies have suggested that competitive relationships between the DMN and various task-positive networks involved in task performance are intrinsically represented in the brain in the form of strong negative correlations (anticorrelations) between spontaneous fluctuations in these networks. Most neuroimaging studies characterize the DMN as a homogenous network, thus few have examined the differential contributions of DMN components to such competitive relationships. Here, we examined functional differentiation within the DMN, with an emphasis on understanding competitive relationships between this and other networks. We used a seed correlation approach on resting-state data to assess differences in functional connectivity between these two regions and their anticorrelated networks. While the positively correlated networks for the vmPFC and PCC seeds largely overlapped, the anticorrelated networks for each showed striking differences. Activity in vmPFC negatively predicted activity in parietal visual spatial and temporal attention networks, whereas activity in PCC negatively predicted activity in prefrontal-based motor control circuits. Granger causality analyses suggest that vmPFC and PCC exert greater influence on their anticorrelated networks than the other way around, suggesting that these two default mode nodes may directly modulate activity in task-positive networks. Thus, the two major nodes comprising the DMN are differentiated with respect to the specific brain systems with which they interact, suggesting greater heterogeneity within this network than is commonly appreciated. Hum Brain Mapp, 2009. © 2008 Wiley-Liss, Inc. [source]


rTMS Reveals Premotor Cortex Dysfunction in Frontal Lobe Epilepsy

EPILEPSIA, Issue 2 2007
Wolfgang N. Löscher
Summary:,Purpose: Studies of motor cortex excitability provided evidence that focal epilepsies may alter the excitability of cortical areas distant from the epileptogenic zone. In order to explore this hypothesis we studied the functional connectivity between premotor and motor cortex in seven patients with frontal lobe epilepsy and seizure onset zone outside the premotor or motor cortex. Methods: Low-frequency subthreshold repetitive transcranial magnetic stimulation was applied to the premotor cortex and its impact on motor cortex excitability was measured by the amplitude of motor-evoked potentials in response to direct suprathreshold stimulation of the motor cortex. Results: Stimulation of the premotor cortex of the non-epileptogenic hemisphere resulted in a progressive and significant inhibition of the motor cortex as evidenced by a reduction of motor evoked potential amplitude. On the other hand, stimulation of the premotor cortex of the epileptogenic hemisphere failed to inhibit the motor cortex. The reduced inhibition of the motor cortex by remote areas was additionally supported by the significantly shorter cortical silent periods obtained after stimulation of the motor cortex of the epileptogenic hemisphere. Conclusion: These results show that the functional connectivity between premotor and motor cortex or motor cortex interneuronal excitability is impaired in the epileptogenic hemisphere in frontal lobe epilepsy while it is normal in the nonepileptogenic hemisphere. [source]


Depolarization promotes GAD 65-mediated GABA synthesis by a post-translational mechanism in neural stem cell-derived neurons

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2008
Nidhi Gakhar-Koppole
Abstract Neuronal activity regulates neurogenesis and neuronal differentiation in the mammalian brain. The commencement of neurotransmitter expression establishes the neuronal phenotype and enables the formation of functional connectivity between neurons. In addition, release of neurotransmitters from differentiating neurons may modulate the behaviour of neural precursors. Here, we show that neuronal activity regulates ,-aminobutyric acid (GABA) expression in neurons generated from stem cells of the striatum and adult subventricular zone (SVZ). Differentiating neurons display spontaneous Ca2+ events, which are voltage-gated calcium channel (VGCC) dependent. Depolarization increases both the frequency of Ca2+ transients and the amount of Ca2+ influx in differentiating neurons. We show that depolarization-dependent GABA expression is regulated by the amplitude and not by the frequency of Ca2+ influx. Brief activation of VGCCs leads to Ca2+ influx that in turn promotes a rapid expression of GABA. Depolarization-dependent GABA expression does not require changes in gene expression. Instead, it involves cAMP-dependent protein kinase (PKA) and Ca2+ and phospholipid-dependent protein kinase (PKC) signalling. Activity increases the number of glutamic acid decarboxylase (GAD) 65-immunoreactive neurons in a PKA-dependent manner, without altering the expression of GAD 65, suggesting that depolarization promotes recruitment of GAD 65 by a post-translational mechanism. In line with this, depolarization does not permanently increase the expression of GABA in neurons derived from neural stem cells of the embryonic striatum, cortex and adult SVZ. Thus, neuronal activity does not merely accelerate neuronal differentiation but it may alter the mechanism of GABA synthesis in newly generated neurons. [source]


Dopamine gene predicts the brain's response to dopaminergic drug

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2007
Michael X Cohen
Abstract Dopamine is critical for reward-based decision making, yet dopaminergic drugs can have opposite effects in different individuals. This apparent discrepancy can be accounted for by hypothesizing an ,inverted-U' relationship, whereby the effect of dopamine agents depends on baseline dopamine system functioning. Here, we used functional MRI to test the hypothesis that genetic variation in the expression of dopamine D2 receptors in the human brain predicts opposing dopaminergic drug effects during reversal learning. We scanned 22 subjects while they engaged in a feedback-based reversal learning task. Ten subjects had an allele on the Taq1A DRD2 gene, which is associated with reduced dopamine receptor concentration and decreased neural responses to rewards (A1+ subjects). Subjects were scanned twice, once on placebo and once on cabergoline, a D2 receptor agonist. Consistent with an inverted-U relationship between the DRD2 polymorphism and drug effects, cabergoline increased neural reward responses in the medial orbitofrontal cortex, cingulate cortex and striatum for A1+ subjects but decreased reward responses in these regions for A1, subjects. In contrast, cabergoline decreased task performance and fronto-striatal connectivity in A1+ subjects but had the opposite effect in A1, subjects. Further, the drug effect on functional connectivity predicted the drug effect on feedback-guided learning. Thus, individual variability in how dopaminergic drugs affect the brain reflects genetic disposition. These findings may help to explain the link between genetic disposition and risk for addictive disorders. [source]


Nigrostriatal lesion induces D2-modulated phase-locked activity in the basal ganglia of rats

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2007
Camila L. Zold
Abstract There is a debate as to what modifications of neuronal activity underlie the clinical manifestations of Parkinson's disease and the efficacy of antiparkinsonian pharmacotherapy. Previous studies suggest that release of GABAergic striatopallidal neurons from D2 receptor-mediated inhibition allows spreading of cortical rhythms to the globus pallidus (GP) in rats with 6-hydroxydopamine-induced nigrostriatal lesions. Here this abnormal spreading was thoroughly investigated. In control urethane-anaesthetized rats most GP neurons were excited during the active part of cortical slow waves (,direct-phase' neurons). Two neuronal populations having opposite phase relationships with cortical and striatal activity coexisted in the GP of 6-hydroxydopamine-lesioned rats. ,Inverse-phase' GP units exhibited reduced firing coupled to striatal activation during slow waves, suggesting that this GP oscillation was driven by striatopallidal hyperactivity. Half of the pallidonigral neurons identified by antidromic stimulation exhibited inverse-phase activity. Therefore, spreading of inverse-phase oscillations through pallidonigral axons might contribute to the abnormal direct-phase cortical entrainment of basal ganglia output described previously. Systemic administration of the D2 agonist quinpirole to 6-hydroxydopamine-lesioned rats reduced GP inverse-phase coupling with slow waves, and this effect was reversed by the D2 antagonist eticlopride. Because striatopallidal hyperactivity was only slightly reduced by quinpirole, other mechanisms might have contributed to the effect of quinpirole on GP oscillations. These results suggest that antiparkinsonian efficacy may rely on other actions of D2 agonists on basal ganglia activity. However, abnormal slow rhythms may promote enduring changes in functional connectivity along the striatopallidal axis, contributing to D2 agonist-resistant clinical signs of parkinsonism. [source]


Task-dependent modulation of functional connectivity between hand motor cortices and neuronal networks underlying language and music: a transcranial magnetic stimulation study in humans

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2007
R. Sparing
Abstract Although language functions are, in general, attributed to the left hemisphere, it is still a matter of debate to what extent the cognitive functions underlying the processing of music are lateralized in the human brain. To investigate hemispheric specialization we evaluated the effect of different overt musical and linguistic tasks on the excitability of both left and right hand motor cortices using transcranial magnetic stimulation (TMS). Task-dependent changes of the size of the TMS-elicited motor evoked potentials were recorded in 12 right-handed, musically naive subjects during and after overt speech, singing and humming, i.e. the production of melody without word articulation. The articulation of meaningless syllables served as control condition. We found reciprocal lateralized effects of overt speech and musical tasks on motor cortex excitability. During overt speech, the corticospinal projection of the left (i.e. dominant) hemisphere to the right hand was facilitated. In contrast, excitability of the right motor cortex increased during both overt singing and humming, whereas no effect was observed on the left hemisphere. Although the traditional concept of hemispheric lateralization of music has been challenged by recent neuroimaging studies, our findings demonstrate that right-hemisphere preponderance of music is nevertheless present. We discuss our results in terms of the recent concepts on evolution of language and gesture, which hypothesize that cerebral networks mediating hand movement and those subserving language processing are functionally linked. TMS may constitute a useful tool to further investigate the relationship between cortical representations of motor functions, music and language using comparative approaches. [source]


Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2001

Abstract Modulation of cortico-cortical connectivity in specific neural circuits might underlie some of the behavioural effects observed following repetitive transcranial magnetic stimulation (rTMS) of the human frontal cortex. This possibility was tested by applying rTMS to the left mid-dorsolateral frontal cortex (MDL-FC) and subsequently measuring functional connectivity of this region with positron emission tomography (PET) and TMS. The results showed a strong rTMS-related modulation of brain activity in the fronto-cingulate circuit. These results were confirmed in a parallel experiment in the rat using electrical stimulation and field-potential recordings. Future studies are needed to provide a direct link between the rTMS-induced modulation of cortical connectivity and its effects on specific behaviours. [source]


Functional connectivity with the hippocampus during successful memory formation

HIPPOCAMPUS, Issue 8 2005
Charan Ranganath
Abstract Although it is well established that the hippocampus is critical for episodic memory, little is known about how the hippocampus interacts with cortical regions during successful memory formation. Here, we used event-related functional magnetic resonance imaging (fMRI) to identify areas that exhibited differential functional connectivity with the hippocampus during processing of novel objects that were subsequently remembered or forgotten on a postscan test. Functional connectivity with the hippocampus was enhanced during successful, as compared with unsuccessful, memory formation, in a distributed network of limbic cortical areas,including perirhinal, orbitofrontal, and retrosplenial/posterior cingulate cortex,that are anatomically connected with the hippocampal formation. Increased connectivity was also observed in lateral temporal, medial parietal, and medial occipital cortex. These findings demonstrate that successful memory formation is associated with transient increases in cortico-hippocampal interaction. © 2005 Wiley-Liss, Inc. [source]


Neurocognitive processes of the religious leader in Christians

HUMAN BRAIN MAPPING, Issue 12 2009
Jianqiao Ge
Abstract Our recent work suggests that trait judgment of the self in Christians, relative to nonreligious subjects, is characterized by weakened neural coding of stimulus self-relatedness in the ventral medial prefrontal cortex (VMPFC) but enhanced evaluative processes of self-referential stimuli in the dorsal medial prefrontal cortex (DMPFC). The current study tested the hypothesis that Christian belief and practice produce a trait summary about the religious leader (Jesus) in the believers and thus episodic memory retrieval is involved to the minimum degree when making trait judgment of Jesus. Experiment 1 showed that to recall a specific incident to exemplify Jesus' trait facilitated behavioral performances associated with the following trait judgment of Jesus in nonreligious subjects but not in Christians. Experiment 2 showed that, for nonreligious subjects, trait judgments of both government and religious leaders resulted in enhanced functional connectivity between MPFC and posterior parietal cortex (PPC)/precuneus compared with self judgment. For Christian subjects, however, the functional connectivity between MPFC and PPC/precuneus differentiated between trait judgments of the government leader and the self but not between trait judgments of Jesus and the self. Our findings suggest that Christian belief and practice modulate the neurocognitive processes of the religious leader so that trait judgment of Jesus engages increased employment of semantic trait summary but decreased memory retrieval of behavioral episodes. Hum Brain Mapp, 2009. © 2009 Wiley-Liss, Inc. [source]


Superior temporal lobe dysfunction and frontotemporal dysconnectivity in subjects at risk of psychosis and in first-episode psychosis

HUMAN BRAIN MAPPING, Issue 12 2009
Nicolas A. Crossley
Abstract Background: Superior temporal lobe dysfunction is a robust finding in functional neuroimaging studies of schizophrenia and is thought to be related to a disruption of fronto-temporal functional connectivity. However, the stage of the disorder at which these functional alterations occur is unclear. We addressed this issue by using functional MRI (fMRI) to study subjects in the prodromal and first episode phases of schizophrenia. Methods: Subjects with an at risk mental state (ARMS) for psychosis, a first psychotic episode (FEP), and controls were studied using fMRI while performing a working memory task. Activation in the superior temporal gyrus (STG) was assessed using statistical parametric mapping, and its relationship to frontal activation was examined using dynamic causal modeling. Results: The STG was differentially engaged across the three groups. There was deactivation of this region during the task in controls, whereas subjects with FEP showed activation and the response in subjects with ARMS was intermediately relative to the two other groups. There were corresponding differences in the effective connectivity between the STG and the middle frontal gyrus across the three groups, with a negative coupling between these areas in controls, a positive coupling in the FEP group, and an intermediate value in the ARMS group. Conclusions: A failure to deactivate the superior temporal lobe during tasks that engage prefrontal cortex is evident at the onset of schizophrenia and may reflect a disruption of fronto-temporal connectivity. Qualitatively similar alterations are evident in people with prodromal symptoms of the disorder. Hum Brain Mapp, 2009. © 2009 Wiley-Liss, Inc. [source]


Functional and anatomical connectivity abnormalities in left inferior frontal gyrus in schizophrenia

HUMAN BRAIN MAPPING, Issue 12 2009
Bumseok Jeong
Abstract Functional studies in schizophrenia demonstrate prominent abnormalities within the left inferior frontal gyrus (IFG) and also suggest the functional connectivity abnormalities in language network including left IFG and superior temporal gyrus during semantic processing. White matter connections between regions involved in the semantic network have also been indicated in schizophrenia. However, an association between functional and anatomical connectivity disruptions within the semantic network in schizophrenia has not been established. Functional (using levels of processing paradigm) as well as diffusion tensor imaging data from 10 controls and 10 chronic schizophrenics were acquired and analyzed. First, semantic encoding specific activation was estimated, showing decreased activation within the left IFG in schizophrenia. Second, functional time series were extracted from this area, and left IFG specific functional connectivity maps were produced for each subject. In an independent analysis, tract-based spatial statistics (TBSS) was used to compare fractional anisotropy (FA) values between groups, and to correlate these values with functional connectivity maps. Schizophrenia patients showed weaker functional connectivity within the language network that includes left IFG and left superior temporal sulcus/middle temporal gyrus. FA was reduced in several white matter regions including left inferior frontal and left internal capsule. Finally, left inferior frontal white matter FA was positively correlated with connectivity measures of the semantic network in schizophrenics, but not in controls. Our results indicate an association between anatomical and functional connectivity abnormalities within the semantic network in schizophrenia, suggesting further that the functional abnormalities observed in this disorder might be directly related to white matter disruptions. Hum Brain Mapp, 2009. © 2009 Wiley-Liss, Inc. [source]


Two systems of resting state connectivity between the insula and cingulate cortex

HUMAN BRAIN MAPPING, Issue 9 2009
Keri S. Taylor
Abstract The insula and cingulate cortices are implicated in emotional, homeostatic/allostatic, sensorimotor, and cognitive functions. Non-human primates have specific anatomical connections between sub-divisions of the insula and cingulate. Specifically, the anterior insula projects to the pregenual anterior cingulate cortex (pACC) and the anterior and posterior mid-cingulate cortex (aMCC and pMCC); the mid-posterior insula only projects to the posterior MCC (pMCC). In humans, functional neuroimaging studies implicate the anterior insula and pre/subgenual ACC in emotional processes, the mid-posterior insula with awareness and interoception, and the MCC with environmental monitoring, response selection, and skeletomotor body orientation. Here, we tested the hypothesis that distinct resting state functional connectivity could be identified between (1) the anterior insula and pACC/aMCC; and (2) the entire insula (anterior, middle, and posterior insula) and the pMCC. Functional connectivity was assessed from resting state fMRI scans in 19 healthy volunteers using seed regions of interest in the anterior, middle, and posterior insula. Highly correlated, low-frequency oscillations (< 0.05 Hz) were identified between specific insula and cingulate subdivisions. The anterior insula was shown to be functionally connected with the pACC/aMCC and the pMCC, while the mid/posterior insula was only connected with the pMCC. These data provide evidence for a resting state anterior insula,pACC/aMCC cingulate system that may integrate interoceptive information with emotional salience to form a subjective representation of the body; and another system that includes the entire insula and MCC, likely involved in environmental monitoring, response selection, and skeletomotor body orientation. Human Brain Mapp 2009. © 2008 Wiley-Liss, Inc. [source]


Random fields,Union intersection tests for detecting functional connectivity in EEG/MEG imaging

HUMAN BRAIN MAPPING, Issue 8 2009
Felix Carbonell
Abstract Electrophysiological (EEG/MEG) imaging challenges statistics by providing two views of the same underlying spatio-temporal brain activity: a topographic view (EEG/MEG) and tomographic view (EEG/MEG source reconstructions). It is a common practice that statistical parametric mapping (SPM) for these two situations is developed separately. In particular, assessing statistical significance of functional connectivity is a major challenge in these types of studies. This work introduces statistical tests for assessing simultaneously the significance of spatio-temporal correlation structure between ERP/ERF components as well as that of their generating sources. We introduce a greatest root statistic as the multivariate test statistic for detecting functional connectivity between two sets of EEG/MEG measurements at a given time instant. We use some new results in random field theory to solve the multiple comparisons problem resulting from the correlated test statistics at each time instant. In general, our approach using the union-intersection (UI) principle provides a framework for hypothesis testing about any linear combination of sensor data, which allows the analysis of the correlation structure of both topographic and tomographic views. The performance of the proposed method is illustrated with real ERP data obtained from a face recognition experiment. Hum Brain Mapp 2009. © 2009 Wiley-Liss, Inc. [source]


Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms

HUMAN BRAIN MAPPING, Issue 5 2009
Gaelle Bettus
Abstract A better understanding of interstructure relationship sustaining drug-resistant epileptogenic networks is crucial for surgical perspective and to better understand the consequences of epileptic processes on cognitive functions. We used resting-state fMRI to study basal functional connectivity within temporal lobes in medial temporal lobe epilepsy (MTLE) during interictal period. Two hundred consecutive single-shot GE-EPI acquisitions were acquired in 37 right-handed subjects (26 controls, eight patients presenting with left and three patients with right MTLE). For each hemisphere, normalized correlation coefficients were computed between pairs of time-course signals extracted from five regions involved in MTLE epileptogenic networks (Brodmann area 38, amygdala, entorhinal cortex (EC), anterior hippocampus (AntHip), and posterior hippocampus (PostHip)). In controls, an asymmetry was present with a global higher connectivity in the left temporal lobe. Relative to controls, the left MTLE group showed disruption of the left EC-AntHip link, and a trend of decreased connectivity of the left AntHip-PostHip link. In contrast, a trend of increased connectivity of the right AntHip-PostHip link was observed and was positively correlated to memory performance. At the individual level, seven out of the eight left MTLE patients showed decreased or disrupted functional connectivity. In this group, four patients with left TLE showed increased basal functional connectivity restricted to the right temporal lobe spared by seizures onset. A reverse pattern was observed at the individual level for patients with right TLE. This is the first demonstration of decreased basal functional connectivity within epileptogenic networks with concomitant contralateral increased connectivity possibly reflecting compensatory mechanisms. Hum Brain Mapp 2009. © 2008 Wiley-Liss, Inc. [source]


Functional connectivity of default mode network components: Correlation, anticorrelation, and causality

HUMAN BRAIN MAPPING, Issue 2 2009
Lucina Q. Uddin
Abstract The default mode network (DMN), based in ventromedial prefrontal cortex (vmPFC) and posterior cingulate cortex (PCC), exhibits higher metabolic activity at rest than during performance of externally oriented cognitive tasks. Recent studies have suggested that competitive relationships between the DMN and various task-positive networks involved in task performance are intrinsically represented in the brain in the form of strong negative correlations (anticorrelations) between spontaneous fluctuations in these networks. Most neuroimaging studies characterize the DMN as a homogenous network, thus few have examined the differential contributions of DMN components to such competitive relationships. Here, we examined functional differentiation within the DMN, with an emphasis on understanding competitive relationships between this and other networks. We used a seed correlation approach on resting-state data to assess differences in functional connectivity between these two regions and their anticorrelated networks. While the positively correlated networks for the vmPFC and PCC seeds largely overlapped, the anticorrelated networks for each showed striking differences. Activity in vmPFC negatively predicted activity in parietal visual spatial and temporal attention networks, whereas activity in PCC negatively predicted activity in prefrontal-based motor control circuits. Granger causality analyses suggest that vmPFC and PCC exert greater influence on their anticorrelated networks than the other way around, suggesting that these two default mode nodes may directly modulate activity in task-positive networks. Thus, the two major nodes comprising the DMN are differentiated with respect to the specific brain systems with which they interact, suggesting greater heterogeneity within this network than is commonly appreciated. Hum Brain Mapp, 2009. © 2008 Wiley-Liss, Inc. [source]


Brain network dynamics during error commission

HUMAN BRAIN MAPPING, Issue 1 2009
Michael C. Stevens
Abstract Previous studies suggest that the anterior cingulate and other prefrontal brain regions might form a functionally-integrated error detection network in the human brain. This study examined whole brain functional connectivity to both correct and incorrect button presses using independent component analysis (ICA) of functional magnetic resonance imaging (fMRI) data collected from 25 adolescent and 25 adult healthy participants (ages 11,37) performing a visual Go/No-Go task. Correct responses engaged a network comprising left lateral prefrontal cortex, left postcentral gyrus/inferior parietal lobule, striatum, and left cerebellum. In contrast, a similar network was uniquely engaged during errors, but this network was not integrated with activity in regions believed to be engaged for higher-order cognitive control over behavior. A medial/dorsolateral prefrontal-parietal neural network responded to all No-Go stimuli, but with significantly greater activity to errors. ICA analyses also identified a third error-related circuit comprised of anterior temporal lobe, limbic, and pregenual cingulate cortices, possibly representing an affective response to errors. There were developmental differences in error-processing activity within many of these neural circuits, typically reflecting greater hemodynamic activation in adults. These findings characterize the spatial structure of neural networks underlying error commission and identify neurobiological differences between adolescents and adults. Hum Brain Mapp 2009. © 2007 Wiley-Liss, Inc. [source]


The effect of respiration variations on independent component analysis results of resting state functional connectivity

HUMAN BRAIN MAPPING, Issue 7 2008
Rasmus M. Birn
Abstract The analysis of functional connectivity in fMRI can be severely affected by cardiac and respiratory fluctuations. While some of these artifactual signal changes can be reduced by physiological noise correction routines, signal fluctuations induced by slower breath-to-breath changes in the depth and rate of breathing are typically not removed. These slower respiration-induced signal changes occur at low frequencies and spatial locations similar to the fluctuations used to infer functional connectivity, and have been shown to significantly affect seed-ROI or seed-voxel based functional connectivity analysis, particularly in the default mode network. In this study, we investigate the effect of respiration variations on functional connectivity maps derived from independent component analysis (ICA) of resting-state data. Regions of the default mode network were identified by deactivations during a lexical decision task. Variations in respiration were measured independently and correlated with the MRI time series data. ICA appears to separate the default mode network and the respiration-related changes in most cases. In some cases, however, the component automatically identified as the default mode network was the same as the component identified as respiration-related. Furthermore, in most cases the time series associated with the default mode network component was still significantly correlated with changes in respiration volume per time, suggesting that current methods of ICA may not completely separate respiration from the default mode network. An independent measure of the respiration provides valuable information to help distinguish the default mode network from respiration-related signal changes, and to assess the degree of residual respiration related effects. Hum Brain Mapp 2008. © 2008 Wiley-Liss, Inc. [source]


Resting state sensorimotor functional connectivity in multiple sclerosis inversely correlates with transcallosal motor pathway transverse diffusivity

HUMAN BRAIN MAPPING, Issue 7 2008
Mark J. Lowe
Abstract Recent studies indicate that functional connectivity using low-frequency BOLD fluctuations (LFBFs) is reduced between the bilateral primary sensorimotor regions in multiple sclerosis. In addition, it has been shown that pathway-dependent measures of the transverse diffusivity of water in white matter correlate with related clinical measures of functional deficit in multiple sclerosis. Taken together, these methods suggest that MRI methods can be used to probe both functional connectivity and anatomic connectivity in subjects with known white matter impairment. We report the results of a study comparing anatomic connectivity of the transcallosal motor pathway, as measured with diffusion tensor imaging (DTI) and functional connectivity of the bilateral primary sensorimotor cortices (SMC), as measured with LFBFs in the resting state. High angular resolution diffusion imaging was combined with functional MRI to define the transcallosal white matter pathway connecting the bilateral primary SMC. Maps were generated from the probabilistic tracking employed and these maps were used to calculate the mean pathway diffusion measures fractional anisotropy ,FA,, mean diffusivity ,MD,, longitudinal diffusivity ,,1,, and transverse diffusivity ,,2,. These were compared with LFBF-based functional connectivity measures (Fc) obtained at rest in a cohort of 11 multiple sclerosis patients and ,10 age- and gender-matched control subjects. The correlation between ,FA, and Fc for MS patients was r = ,0.63, P < 0.04. The correlation between all subjects ,,2, and Fc was r = 0.42, P < 0.05. The correlation between all subjects ,,2, and Fc was r = ,0.50, P < 0.02. None of the control subject correlations were significant, nor were ,FA,, ,,1,, or ,MD, significantly correlated with Fc for MS patients. This constitutes the first in vivo observation of a correlation between measures of anatomic connectivity and functional connectivity using spontaneous LFBFs. Hum Brain Mapp, 2008. © 2008 Wiley-Liss, Inc. [source]


Detecting functional nodes in large-scale cortical networks with functional magnetic resonance imaging: A principal component analysis of the human visual system

HUMAN BRAIN MAPPING, Issue 9 2007
Christine Ecker
Abstract This study aimed to demonstrate how a regional variant of principal component analysis (PCA) can be used to delineate the known functional subdivisions of the human visual system. Unlike conventional eigenimage analysis, PCA was carried out as a second-level analysis subsequent to model-based General Linear Model (GLM)-type functional activation mapping. Functional homogeneity of the functional magnetic resonance imaging (fMRI) time series within and between clusters was examined on several levels of the visual network, starting from the level of individual clusters up to the network level comprising two or more distinct visual regions. On each level, the number of significant components was identified and compared with the number of clusters in the data set. Eigenimages were used to examine the regional distribution of the extracted components. It was shown that voxels within individual clusters and voxels located in bilateral homologue visual regions can be represented by a single component, constituting the characteristic functional specialization of the cluster(s). If, however, PCA was applied to time series of voxels located in functionally distinct visual regions, more than one component was observed with each component being dominated by voxels in one of the investigated regions. The model of functional connections derived by PCA was in accordance with the well-known functional anatomy and anatomical connectivity of the visual system. PCA in combination with conventional activation mapping might therefore be used to identify the number of functionally distinct nodes in an fMRI data set in order to generate a model of functional connectivity within a neuroanatomical network. Hum Brain Mapp, 2006. © 2006 Wiley-Liss, Inc. [source]


Disruptions in Functional Network Connectivity During Alcohol Intoxicated Driving

ALCOHOLISM, Issue 3 2010
Catherine I. Rzepecki-Smith
Background:, Driving while under the influence of alcohol is a major public health problem whose neural basis is not well understood. In a recently published functional magnetic resonance imaging (fMRI) study (Meda et al., 2009), our group identified 5, independent critical driving-associated brain circuits whose inter-regional connectivity was disrupted by alcohol intoxication. However, the functional connectivity between these circuits has not yet been explored in order to determine how these networks communicate with each other during sober and alcohol-intoxicated states. Methods:, In the current study, we explored such differences in connections between the above brain circuits and driving behavior, under the influence of alcohol versus placebo. Forty social drinkers who drove regularly underwent fMRI scans during virtual reality driving simulations following 2 alcohol doses, placebo and an individualized dose producing blood alcohol concentrations (BACs) of 0.10%. Results:, At the active dose, we found specific disruptions of functional network connectivity between the frontal-temporal-basal ganglia and the cerebellar circuits. The temporal connectivity between these 2 circuits was found to be less correlated (p < 0.05) when driving under the influence of alcohol. This disconnection was also associated with an abnormal driving behavior (unstable motor vehicle steering). Conclusions:, Connections between frontal-temporal-basal ganglia and cerebellum have recently been explored; these may be responsible in part for maintaining normal motor behavior by integrating their overlapping motor control functions. These connections appear to be disrupted by alcohol intoxication, in turn associated with an explicit type of impaired driving behavior. [source]


Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis

MOLECULAR ECOLOGY, Issue 17 2010
STEPHEN F. SPEAR
Abstract Measures of genetic structure among individuals or populations collected at different spatial locations across a landscape are commonly used as surrogate measures of functional (i.e. demographic or genetic) connectivity. In order to understand how landscape characteristics influence functional connectivity, resistance surfaces are typically created in a raster GIS environment. These resistance surfaces represent hypothesized relationships between landscape features and gene flow, and are based on underlying biological functions such as relative abundance or movement probabilities in different land cover types. The biggest challenge for calculating resistance surfaces is assignment of resistance values to different landscape features. Here, we first identify study objectives that are consistent with the use of resistance surfaces and critically review the various approaches that have been used to parameterize resistance surfaces and select optimal models in landscape genetics. We then discuss the biological assumptions and considerations that influence analyses using resistance surfaces, such as the relationship between gene flow and dispersal, how habitat suitability may influence animal movement, and how resistance surfaces can be translated into estimates of functional landscape connectivity. Finally, we outline novel approaches for creating optimal resistance surfaces using either simulation or computational methods, as well as alternatives to resistance surfaces (e.g. network and buffered paths). These approaches have the potential to improve landscape genetic analyses, but they also create new challenges. We conclude that no single way of using resistance surfaces is appropriate for every situation. We suggest that researchers carefully consider objectives, important biological assumptions and available parameterization and validation techniques when planning landscape genetic studies. [source]


Attenuated asymmetry of functional connectivity in schizophrenia: A high-resolution EEG study

PSYCHOPHYSIOLOGY, Issue 4 2010
Mahdi Jalili
Abstract The interhemispheric asymmetries that originate from connectivity-related structuring of the cortex are compromised in schizophrenia (SZ). Under the assumption that such abnormalities affect functional connectivity, we analyzed its correlate,EEG synchronization,in SZ patients and matched controls. We applied multivariate synchronization measures based on Laplacian EEG and tuned to various spatial scales. Compared to the controls who had rightward asymmetry at a local level (EEG power), rightward anterior and leftward posterior asymmetries at an intraregional level (1st and 2nd order S-estimator), and rightward global asymmetry (hemispheric S-estimator), SZ patients showed generally attenuated asymmetry, the effect being strongest for intraregional synchronization in the alpha and beta bands. The abnormalities of asymmetry increased with the duration of the disease and correlated with the negative symptoms. We discuss the tentative links between these findings and gross anatomical asymmetries, including the cerebral torque and gyrification pattern, in normal subjects and SZ patients. [source]


Coupling of theta activity and glucose metabolism in the human rostral anterior cingulate cortex: An EEG/PET study of normal and depressed subjects

PSYCHOPHYSIOLOGY, Issue 6 2003
Diego A. Pizzagalli
Abstract In rodents, theta rhythm has been linked to the hippocampal formation, as well as other regions, including the anterior cingulate cortex (ACC). To test the role of the ACC in theta rhythm, concurrent measurements of brain electrical activity (EEG) and glucose metabolism (PET) were performed in 29 subjects at baseline. EEG data were analyzed with a source localization technique that enabled voxelwise correlations of EEG and PET data. For theta, but not other bands, the rostral ACC (Brodmann areas 24/32) was the largest cluster with positive correlations between current density and glucose metabolism. Positive correlations were also found in right fronto-temporal regions. In control but not depressed subjects, theta within ACC and prefrontal/orbitofrontal regions was positively correlated. The results reveal a link between theta and cerebral metabolism in the ACC as well as disruption of functional connectivity within frontocingulate pathways in depression. [source]


Laminar organization of the developing lateral olfactory tract revealed by differential expression of cell recognition molecules

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2004
Koichiro Inaki
Abstract The projection neurons in the olfactory bulb (mitral and tufted cells) send axons through the lateral olfactory tract (LOT) onto several structures of the olfactory cortex. However, little is known of the molecular and cellular mechanisms underlying establishment of functional connectivity from the bulb to the cortex. Here, we investigated the developmental process of LOT formation by observing expression patterns of cell recognition molecules in embryonic mice. We immunohistochemically identified a dozen molecules expressed in the developing LOT and some of them were localized to subsets of mitral cell axons. Combinatorial immunostaining for these molecules revealed that the developing LOT consists of three laminas: superficial, middle, and deep. Detailed immunohistochemical, in situ hybridization, and 5-bromodeoxyuridine labeling analyses suggested that the laminar organization reflects: 1) the segregated pathways from the accessory and main olfactory bulbs, and 2) the different maturity of mitral cell axons. Mitral cell axons of the accessory olfactory bulb were localized to the deep lamina, segregated from those of the main olfactory bulb. In the main olfactory pathway, axons of mature mitral cells, whose somata is located in the apical sublayer of the mitral cell layer, were localized to the middle lamina within LOT, while those of immature mitral cells that located in the basal sublayer were complementarily localized to the superficial lamina. These results suggest that newly generated immature axons are added to the most superficial lamina of LOT successively, leading to the formation of piled laminas with different maturational stages of the mitral cell axons. J. Comp. Neurol. 479:243,256, 2004. © 2004 Wiley-Liss, Inc. [source]


Firing properties and functional connectivity of substantia nigra pars compacta neurones recorded with a multi-electrode array in vitro

THE JOURNAL OF PHYSIOLOGY, Issue 10 2010
Nicola Berretta
Dopamine (DA) neurones of the substantia nigra pars compacta (SNc) are involved in a wide variety of functions, including motor control and reward-based learning. In order to gain new insights into the firing properties of neuronal ensembles in the SNc, we recorded extracellular single units from spontaneously active neurones, using a multi-electrode array (MEA) device in midbrain slices. The majority of neurones (50.21%) had a low firing frequency (1,3 Hz) and a stable pacemaker-like pattern, while others (44.84%) were irregular, but still firing at a low rate. The remaining population (4.95%) comprised neurones with a regular higher firing rate (5,10 Hz). High rate neurones, on the whole, were insensitive to DA (30 ,m), while low rate neurones were mostly inhibited by DA, although responding either with a prominent or a weak inhibition. However, we recorded low rate regular neurones that were insensitive to DA, or irregular low rate neurones excited by DA. Interestingly, we found pairs of active neurones (12.10 ± 3.14%) with a significant proportion of spikes occurring synchronously. Moreover, the crosscorrelation probability in each pair tended to increase in response to DA. In conclusion, MEA recordings in midbrain slices reveal a much more complex picture than previously reported with regard to the firing pattern and DA sensitivity of spontaneously active SNc neurones. Moreover, the study opens new prospectives for the in vitro investigation of functional connectivity in the midbrain dopaminergic system, thus proposing new targets for the pharmacological treatment of DA-dependent neurological disorders. [source]


Synaptic heterogeneity between mouse paracapsular intercalated neurons of the amygdala

THE JOURNAL OF PHYSIOLOGY, Issue 1 2007
Raffaella Geracitano
GABAergic medial paracapsular intercalated (Imp) neurons of amygdala are thought of as playing a central role in fear learning and extinction. We report here that the synaptic network formed by these neurons exhibits distinct short-term plastic synaptic responses. The success rate of synaptic events evoked at a frequency range of 0.1,10 Hz varied dramatically between different connected cell pairs. Upon enhancing the frequency of stimulation, the success rate increased, decreased or remained constant, in a similar number of cell pairs. Such synaptic heterogeneity resulted in inhibition of the firing of the postsynaptic neurons with different efficacies. Moreover, we found that the different synaptic weights were mainly determined by diversity in presynaptic release probabilities rather than postsynaptic changes. Sequential paired recording experiments demonstrated that the same presynaptic neuron established the same type of synaptic connections with different postsynaptic neurons, suggesting the absence of target-cell specificity. Conversely, the same postsynaptic neuron was contacted by different types of synaptic connections formed by different presynaptic neurons. A detailed anatomical analysis of the recorded neurons revealed discrete and unexpected peculiarities in the dendritic and axonal patterns of different cell pairs. In contrast, several intrinsic electrophysiological responses were homogeneous among neurons, and synaptic failure counts were not affected by presynaptic cannabinoid 1 or GABAB receptors. We propose that the heterogeneous functional connectivity of Imp neurons, demonstrated by this study, is required to maintain the stability of firing patterns which is critical for the computational role of the amygdala in fear learning and extinction. [source]