Fungal Mycelium (fungal + mycelium)

Distribution by Scientific Domains


Selected Abstracts


Mycelium cultivation, chemical composition and antitumour activity of a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis

JOURNAL OF APPLIED MICROBIOLOGY, Issue 2 2006
P.H. Leung
Abstract Aims:, To examine and illustrate the morphological characteristics and growth kinetics of Cs-HK1, a Tolypocladium fungus, isolated from wild Cordyceps sinensis in solid and liquid cultures, and the major chemical constituents and antitumour effects of Cs-HK1 mycelium. Methods and Results:, The Cs-HK1 fungus was isolated from the fruiting body of a wild C. sinensis and identified as a Tolypocladium sp. fungus. It grew rapidly at 22,25°C on a liquid medium containing glucose, yeast extract, peptone and major inorganic salts, with a specific growth rate of 1·1 day,1, reaching a cell density of 23·0 g dw l,1 in 7,9 days. Exopolysaccharides accumulated in the liquid culture to about 0·3 g l,1 glucose equivalent. In comparison with natural C. sinensis, the fungal mycelium had similar contents of protein (11·7,,g) and carbohydrate (654·6,,g) but much higher contents of polysaccharide (244·2 mg vs 129·5 mg), adenosine (1116·8,,g vs 264·6 ,g) and cordycepin (65·7 ,g vs 20·8 ,g) (per gram dry weight). Cyclosporin A, an antibiotic commonly produced by Tolypocladium sp., was also detected from the mycelium extract. The hot water extract of mycelium showed low cytotoxic effect on B16 melanoma cells in culture (about 25% inhibition) but significant antitumour effect in animal tests, causing 50% inhibition of B16 cell-induced tumour growth in mice. Conclusions:, The Tolypocladium sp. fungus, Cs-HK1, can be easily cultivated by liquid fermentation. The mycelium biomass contained the major bioactive compounds of C. sinensis, and the mycelium extract had significant antitumour activity. Significance and Impact of the Study:, The Cs-HK1 fungus may be a new and promising medicinal fungus and an effective and economical substitute of the wild C. sinensis for health care. [source]


Pathogenesis of Potato Gangrene Caused by Phoma exigua var. foveata: II.

JOURNAL OF PHYTOPATHOLOGY, Issue 7 2004
Activities of some Hydrolases, Dehydrogenases
Abstract The location of enzyme activity in gangrene-diseased tubers was determined using the nitrocellulose blotting method. The activity of aminopeptidase and esterase was located in tissues adjacent to dry rot caused by Phoma exigua var. foveata and in other apparently healthy tissues. The activity of glucuronidase, succinic and glucose-6-phosphate dehydrogenases (G-6-PDH), however, was confined to tissues adjacent to the rotted tissue. The pathogen produces very active , - and , -glycosidases, so their highest activity occurred in rotten tissue that was filled with fungal mycelium. Results suggest that all these enzymes are involved in alteration of cell metabolism and the destruction of diseased tuber tissue. [source]


Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism

MOLECULAR PLANT PATHOLOGY, Issue 2 2000
Hsueh-Mei Chou
Albugo candida (Pers.) (O.) Kunze is a biotrophic pathogen which infects the crucifer Arabidopsis thaliana (L.) Heynh forming discrete areas of infection. Eight days after inoculation of leaves, white blisters became visible on the under surface of the leaf although no symptoms were apparent on the upper surface. By day 14, the region of leaf invaded by fungal mycelium had become chlorotic. Recently it has been hypothesized that an accumulation of soluble carbohydrates, following an increase in invertase activity, may trigger sugar signal transduction pathways leading to the repression of photosynthetic gene expression and to the induction of defence proteins. This hypothesis was investigated by quantifying localized changes in carbohydrate and photosynthetic metabolism and the expression of genes encoding photosynthetic and defence proteins. Quantitative imaging of chlorophyll fluorescence revealed that the rate of photosynthesis declined progressively in the invaded regions of the leaf. However, in uninfected regions of the infected leaf the rate of photosynthesis was similar to that measured in the control leaf until late on during the infection cycle when it declined. Images of nonphotochemical fluorescence quenching (NPQ) suggested that the capacity of the Calvin cycle had been reduced in infected regions and that there was a complex metabolic heterogeneity within the infected leaf. A. candida also caused localized changes in the carbohydrate metabolism of the leaf; soluble carbohydrates accumulated in the infected region whereas the amount of starch declined. The reverse was seen in uninfected regions of the infected leaf; carbohydrates did not accumulate until late on during infection and the amount of starch increased as the infection progressed. There was an increase in the activity of invertases which was confined to regions of the leaf invaded by the fungal mycelium. The increase in apoplastic invertase activity was of host origin, as mRNA levels of the AT,FRUCT1 gene (measured by semiquantitative RT-PCR) increased 40-fold in the infected region. The increase in soluble invertase activity resulted from the appearance of a new isoform in the invaded region of the leaf. Current evidence suggests that this was of fungal origin. Northern blot analysis of cab and rbcS showed that photosynthetic gene expression was repressed in the infected leaf from 6 days after inoculation (DAI) when compared to control leaves. In contrast, there was no detectable induction of defence proteins in the infected leaf. These data are discussed in the context of the sugar-sensing hypothesis presented above. [source]


The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp

NEW PHYTOLOGIST, Issue 2 2009
M. Barret
Summary ,,In soil, some antagonistic rhizobacteria contribute to reduce root diseases caused by phytopathogenic fungi. Direct modes of action of these bacteria have been largely explored; however, commensal interaction also takes place between these microorganisms and little is known about the influence of filamentous fungi on bacteria. ,,An in vitro confrontation bioassay between the pathogenic fungus Gaeumannomyces graminis var. tritici (Ggt) and the biocontrol bacterial strain Pseudomonas fluorescens Pf29Arp was set up to analyse bacterial transcriptional changes induced by the fungal mycelium at three time-points of the interaction before cell contact and up until contact. For this, a Pf29Arp shotgun DNA microarray was constructed. Specifity of Ggt effect was assessed in comparison with one of two other filamentous fungi, Laccaria bicolor and Magnaporthe grisea. ,,During a commensal interaction, Ggt increased the growth rate of Pf29Arp. Before contact, Ggt induced bacterial genes involved in mycelium colonization. At contact, genes encoding protein of stress response and a patatin-like protein were up-regulated. Among all the bacterial genes identified, xseB was specifically up-regulated at contact by Ggt but down-regulated by the other fungi. ,,Data showed that the bacterium sensed the presence of the fungus early, but the main gene alteration occurred during bacterial,fungal cell contact. [source]


Cloning and expression of a Melanocarpus albomyces steryl esterase gene in Pichia pastoris and Trichoderma reesei

BIOTECHNOLOGY & BIOENGINEERING, Issue 3 2006
Hanna Kontkanen
Abstract The ste1 gene encoding a steryl esterase was isolated from the thermophilic fungus Melanocarpus albomyces. The gene has one intron, and it encodes a protein consisting of 576 amino acids. The deduced amino acid sequence of the steryl esterase was shown to be related to lipases and other esterases such as carboxylesterases. Formation of mature protein requires post-translational removal of a putative 18-amino-acid signal sequence and a 13-residue propeptide at the N-terminus. The intronless version of the Melanocarpus albomyces ste1 gene was expressed in Pichia pastoris under the inducible AOX1 promoter. The production level was low, and a large proportion of the total activity yield was found to be present intracellularly. However, the fact that steryl esterase activity was produced by P. pastoris cells carrying the expression cassette confirmed that the correct gene had been cloned. The ste1 gene was subsequently expressed in T. reesei under the inducible cbh1 promoter, and a clearly higher production level was obtained. About 60% of the total activity was bound to the fungal mycelium or to solid components of the culture medium, or existed as aggregates. Triton X-100 was successfully used to recover this activity. The heterologous production system in T. reesei provides a means of producing M. albomyces steryl esterase STE1 reliably in large scale for future studies. © 2006 Wiley Periodicals, Inc. [source]