Fungal Communities (fungal + community)

Distribution by Scientific Domains
Distribution within Life Sciences

Terms modified by Fungal Communities

  • fungal community composition

  • Selected Abstracts


    Aerobic Heterotrophic Bacterial and Fungal Communities in the Topsoil of Omo Biosphere Reserve in Southwestern Nigeria,

    BIOTROPICA, Issue 2 2000
    A. I. Okoh
    ABSTRACT As a part of the surveillance effort to monitor the ecological status of Omo Biosphere Reserve in the southwestern region of Nigeria, the aerobic heterotrophic bacterial and fungal communities of the topsoil were investigated in March 1995 and April 1996, before the onset of the rainy season. Four distinct wood-tree plantations, a core strict nature reserve (SNR) area, and a buffer zone were sampled. The topsoil samples (7.5 cm depth), including the litter, were taken with an auger (8 cm diameter) and transported to the laboratory in polyethylene bags. One-gram dry weight equivalent of sample was suspended in 10 ml sterile water, and serial dilutions from it were used for the estimation of bacterial and fungal densities. The bacterial and fungal densities ranged in the order of 106 and 103 cfu/g, respectively. Out of the 18 bacterial and 16 fungal species that were obtained, 13 and 12, respectively, were isolated from the core SNR. About 46 to 69 percent of the bacteria and 50 to 83 percent of the fungi species found in the SNR were absent in different combinations in the plantations and the buffer zone; these variations were significant among the sites monitored. The bacterial and fungal species compositions were significantly different between the SNR and each of the other sites. Proportional distributions within the sites were significant only for the bacterial communities. It would appear that plantation and human activities have caused significant changes in the distribution and species richness of the heterotrophic bacterial and fungal communities relative to the undisturbed SNR area of the Omo Biosphere Reserve. [source]


    Seasonal and substrate preferences of fungi colonizing leaves in streams: traditional versus molecular evidence

    ENVIRONMENTAL MICROBIOLOGY, Issue 2 2005
    Liliya G. Nikolcheva
    Summary Aquatic hyphomycetes are the main fungal decomposers of plant litter in streams. We compared the importance of substrate (three leaf species, wood) and season on fungal colonization. Substrates were exposed for 12 4-week periods. After recovery, mass loss, fungal biomass and release of conidia by aquatic hyphomycetes were measured. Fungal communities were characterized by counting and identifying released conidia and by extracting and amplifying fungal DNA (ITS2), which was subdivided into phylotypes by denaturing gradient gel electrophoresis (DGGE) and terminal-restriction fragment length polymorphism (T-RFLP). Mass loss, fungal biomass and reproduction were positively correlated with stream temperature. Conidial diversity was highest between May and September. Numbers of different phylotypes were more stable. Principal coordinate analyses (PCO) and canonical analyses of principal coordinates (CAP) of presence/absence data (DGGE bands, T-RFLP peaks and conidial species) showed a clear seasonal trend (P, 0.002) but no substrate effect (P, 0.88). Season was also a significant factor when proportional similarities of conidial communities or relative intensities of DGGE bands were evaluated (P, 0.003). Substrate was a significant factor determining DGGE band intensities (P = 0.002), but did not significantly affect conidial communities (P = 0.50). Both traditional and molecular techniques suggest that strict exclusion of fungi by substrate type is rare, and that presence of different species or phylotypes is governed by season. Biomasses of the various taxa (based on DGGE band intensities) were related to substrate type. [source]


    Fungal community diversity and soil health in intensive potato cropping systems of the east Po valley, northern Italy

    ANNALS OF APPLIED BIOLOGY, Issue 2 2009
    L.M. Manici
    Abstract An ecological approach was used to investigate the relationship between diversity of soil fungal communities and soil-borne pathogen inoculum in a potato growing area of northern Italy affected by yield decline. The study was performed in 14 sites with the same tillage management practices: 10 named ,potato sites', that for many years had been intensely cultivated with potatoes, and 4 named ,rotation sites', subject to a 4-year rotation without potatoes or any recurrent crop for many years. Fungal communities were recorded using conventional (soil fungi by plate count and endophytic fungi as infection frequency on pot-grown potato plant roots in soil samples) and molecular approaches [Basidiomycetes and Ascomycetes with specific and denaturing gradient gel electrophoresis (DGGE) analysis]. Diversity of fungal communities in potato sites was significantly lower than that in rotation sites. In addition, fungal communities in rotation sites showed lower Berger,Parker dominance than those in the potato sites, suggesting that rotation sites had a higher diversity as well as a better fungal community balance than potato sites. The ANalysis Of SIMilarity test of soil fungi and root endophytic fungi revealed that the two cropping systems differed significantly for species composition. Root endophytic fungal communities showed a greater ability to colonise potato roots in soil samples from potato sites than those from rotation sites. Moreover, the majority of endophytic root fungal community species in potato sites belonged to the potato root rot complex and storage disease (Colletotrichum coccodes, Fusarium solani and Fusarium oxysporum), while those in rotation sites were mainly ubiquitous or saprobic fungi. Soil rDNA analyses showed that Ascomycetes were much more frequent than Basidiomycetes in all the soils examined. DGGE analysis, with the Ascomycete-specific primer (ITS1F/ITS4A), did not reveal distinctions between the communities found at the potato and rotation sites, although the same analysis showed differences between the communities of Basidiomycetes (specific primer ITS1F/ITS4B). These findings showed that recurrent potato cropping affected diversity and composition of soil fungal communities and induced a shift in specialisation of the endophytic fungi towards potato. [source]


    Identification of the adherent microbiota on the gills and skin of poly-cultured gibel carp (Carassius auratus gibelio) and bluntnose black bream (Megalobrama amblycephala Yih)

    AQUACULTURE RESEARCH, Issue 9 2010
    Wenwen Wang
    Abstract PCR-denaturing gradient gel electrophoresis (DGGE) was applied to analyse the microbial community attached to the gills and skin of poly-cultured gibel carp (Carassius auratus gibelio) and bluntnose black bream (Megalobrama amblycephala Yih) and compare these results with those detected in the rearing water. The microbiota discussed included bacteria, fungi and a specific bacterial taxa of actinomycetes was also analysed. Proteobacteria, Firmicutes, Actinobacteria, Cyanobacteria, Ascomycota, Basidiomycota and some unclassified microbiota were identified. Based on our results, we concluded that: (1) the adherent bacterial/fungal communities on the gills and skin were different from those in the rearing water, (2) the bacterial/fungal diversities on fish gills were lower than that on fish skin, (3) the adherent bacterial/fungal communities on gill and skin of gibel carp were different from that of bluntnose black bream and (4) the adherent actinomycetal community showed certain similarity between the skin of different hosts. Based on our conclusions, we suggested that the topic investigated in the present study merits further investigations. [source]


    A meta-analysis of biotic resistance to exotic plant invasions

    ECOLOGY LETTERS, Issue 10 2004
    Jonathan M. Levine
    Abstract Biotic resistance describes the ability of resident species in a community to reduce the success of exotic invasions. Although resistance is a well-accepted phenomenon, less clear are the processes that contribute most to it, and whether those processes are strong enough to completely repel invaders. Current perceptions of strong, competition-driven biotic resistance stem from classic ecological theory, Elton's formulation of ecological resistance, and the general acceptance of the enemies-release hypothesis. We conducted a meta-analysis of the plant invasions literature to quantify the contribution of resident competitors, diversity, herbivores and soil fungal communities to biotic resistance. Results indicated large negative effects of all factors except fungal communities on invader establishment and performance. Contrary to predictions derived from the natural enemies hypothesis, resident herbivores reduced invasion success as effectively as resident competitors. Although biotic resistance significantly reduced the establishment of individual invaders, we found little evidence that species interactions completely repelled invasions. We conclude that ecological interactions rarely enable communities to resist invasion, but instead constrain the abundance of invasive species once they have successfully established. [source]


    Impact of Collimonas bacteria on community composition of soil fungi

    ENVIRONMENTAL MICROBIOLOGY, Issue 6 2009
    Sachie Höppener-Ogawa
    Summary The genus Collimonas consists of soil bacteria that have the potential to grow at the expense of living fungal hyphae. However, the consequences of this mycophagous ability for soil fungi are unknown. Here we report on the development of fungal communities after introduction of collimonads in a soil that had a low abundance of indigenous collimonads. Development of fungal communities was stimulated by addition of cellulose or by introducing plants (Plantago lanceolata). Community composition of total fungi in soil and rhizosphere and of arbuscular mycorrhizal fungi in roots was examined by PCR-DGGE. The introduction of collimonads altered the composition of all fungal communities studied but had no effects on fungal biomass increase, cellulose degrading activity or plant performance. The most likely explanation for these results is that differences in sensitivity of fungal species to the presence of collimonads result in competitive replacement of species. The lab and greenhouse experiments were complemented with a field experiment. Mesh bags containing sterile sand with or without collimonads were buried in an ex-arable field and a forest. The presence of collimonads had an effect on the composition of fungi invading these bags in the ex-arable site but not in the forest site. [source]


    Fungal rDNA signatures in coronary atherosclerotic plaques

    ENVIRONMENTAL MICROBIOLOGY, Issue 12 2007
    Stephan J. Ott
    Summary Bacterial DNA has been found in coronary plaques and it has therefore been concluded that bacteria may play a role as trigger factors in the chronic inflammatory process underlying coronary atherosclerosis. However, the microbial spectrum is complex and it is not known whether microorganisms other than bacteria are involved in coronary disease. Fungal 18S rDNA signatures were systematically investigated in atherosclerotic tissue obtained through catheter-based atherectomy of 38 patients and controls (unaffected coronary arteries) using clone libraries, denaturating gradient gel analysis (DGGE), in situ hybridization and fluorescence in situ hybridization (FISH). Fungal DNA was found in 35 of 38 (92.11%) coronary heart disease patients by either polymerase chain reaction (PCR) with universal primers or in situ hybridization analysis (n = 5), but not in any control sample. In a clone library with more than 350 sequenced clones from pooled patient DNA, an overall richness of 19 different fungal phylotypes could be observed. Fungal profiles of coronary heart disease patients obtained by DGGE analysis showed a median richness of fungal species of 5 (range from 2 to 9) with a high interindividual variability (mean similarity 18.83%). For the first time, the presence of fungal components in atherosclerotic plaques has been demonstrated. Coronary atheromatous plaques harbour diverse and variable fungal communities suggesting a polymicrobial contribution to the chronic inflammatory aetiology. [source]


    Comparative single-strand conformation polymorphism (SSCP) and microscopy-based analysis of nitrogen cultivation interactive effects on the fungal community of a semiarid steppe soil

    FEMS MICROBIOLOGY ECOLOGY, Issue 2-3 2001
    Jennifer L. Lowell
    Abstract The effects of nitrogen accretion on fungal diversity and community structure in early-seral (cultivated) and native (uncultivated) shortgrass steppe soils were evaluated using single-strand conformation polymorphism (SSCP) and microscopy in a comparative experiment. Selected haplotypes generated from fungal 18S gene fragments were also sequenced for species identification. Microscopy-based analyses showed significantly shorter fungal hyphal lengths in the early-seral control plots in comparison with the native control plots (P<0.0003), independent of nitrogen addition. Although diversity indices did not show significant differences between the plots, SSCP analyses indicated that fungal community structure differed in the native and early-seral control sites. In nitrogen-amended sites, gene sequences from dominant haplotypes indicated a shift to a more common nitrogen-impacted fungal community. While nitrogen amendments appear to be more important than cultivation in influencing these soil fungal communities, hyphal lengths were only decreased due to cultivation. The use of microscopic and molecular techniques, as carried out in this study, provided integrative information concerning fungal community responses to wide spread stresses being imposed globally on terrestrial ecosystems, that is not provided by the individual techniques. [source]


    Impact of elevated carbon dioxide on the rhizosphere communities of Carex arenaria and Festuca rubra

    GLOBAL CHANGE BIOLOGY, Issue 11 2007
    BARBARA DRIGO
    Abstract The increase in atmospheric carbon dioxide (CO2) levels is predicted to stimulate plant carbon (C) fixation, potentially influencing the size, structure and function of micro- and mesofaunal communities inhabiting the rhizosphere. To assess the effects of increased atmospheric CO2 on bacterial, fungal and nematode communities in the rhizosphere, Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown in three dune soils under controlled soil temperature and moisture conditions, while subjecting the aboveground compartment to defined atmospheric conditions differing in CO2 concentrations (350 and 700 ,L L,1). Real-time polymerase chain reaction (PCR) and PCR-denaturing gradient gel electrophoresis methods were used to examine effects on the size and structure of rhizosphere communities. Multivariate analysis of community profiles showed that bacteria were most affected by elevated CO2, and fungi and nematodes to a lesser extent. The influence of elevated CO2 was plant dependent, with the mycorrhizal plant (F. rubra) exerting a greater influence on bacterial and fungal communities. Biomarker data indicated that arbuscular mycorrhizal fungi (AMF) may play an important role in the observed soil community responses. Effects of elevated CO2 were also soil dependent, with greater influence observed in the more organic-rich soils, which also supported higher levels of AMF colonization. These results indicate that responses of soil-borne communities to elevated CO2 are different for bacteria, fungi and nematodes and dependent on the plant type and soil nutrient availability. [source]


    Ectomycorrhizal fungal communities at forest edges

    JOURNAL OF ECOLOGY, Issue 2 2005
    IAN A. DICKIE
    Summary 1Ectomycorrhizal fungi are spatially associated with established ectomycorrhizal vegetation, but the influence of distance from established vegetation on the presence, abundance, diversity and community composition of fungi is not well understood. 2We examined mycorrhizal communities in two abandoned agricultural fields in Minnesota, USA, using Quercus macrocarpa seedlings as an in situ bioassay for ectomycorrhizal fungi from 0 to 20 m distance from the forest edge. 3There were marked effects of distance on all aspects of fungal communities. The abundance of mycorrhiza was uniformly high near trees, declined rapidly around 15 m from the base of trees and was uniformly low at 20 m. All seedlings between 0 and 8 m distance from forest edges were ectomycorrhizal, but many seedlings at 16,20 m were uninfected in one of the two years of the study. Species richness of fungi also declined with distance from trees. 4Different species of fungi were found at different distances from the edge. ,Rare' species (found only once or twice) dominated the community at 0 m, Russula spp. were dominants from 4 to 12 m, and Astraeus sp. and a Pezizalean fungus were abundant at 12 m to 20 m. Cenococcum geophilum, the most dominant species found, was abundant both near trees and distant from trees, with lowest relative abundance at intermediate distances. 5Our data suggest that seedlings germinating at some distance from established ectomycorrhizal vegetation (15.5 m in the present study) have low levels of infection, at least in the first year of growth. Distance from established vegetation represents an important gradient for ectomycorrhizal fungi, with different species occupying distinct niches along this gradient. This provides support for niche differentiation as a factor contributing to ectomycorrhizal fungal diversity. 6Ectomycorrhizal infection of seedlings is spatially complex, with high infection and high fungal diversity near trees, high infection but lower diversity at intermediate distances, and low infection and low fungal diversity distant from trees. This spatial complexity should be considered as a factor potentially influencing the establishment of ectomycorrhizal vegetation. [source]


    Clonal and seasonal shifts in communities of saprotrophic microfungi and soil enzyme activities in the mycorrhizosphere of Salix spp.

    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2006
    Christel Baum
    Abstract The species-specific microbial root and rhizosphere colonization contributes essentially to the plant nutrient supply. The species number and colonization densities of cultivable saprotrophic microfungi and the activities of nutrient-releasing soil enzymes (protease, acid and alkaline phosphatase, arylsulfatase) were investigated in the rhizosphere of one low mycorrhizal (Salix viminalis) and one higher mycorrhizal (S. × dasyclados) willow clone at a Eutric Cambisol in N Germany. After soil washing, in total 32 and 28 saprotrophic microfungal species were isolated and identified microscopically from the rhizosphere of S.viminalis and S. × dasyclados, respectively. The fungal species composition changed within the growing season but the species number was always lower under S. × dasyclados than under S. viminalis. Under both willow clones, the fungal colonization density was largest in spring, and the species number was largest in autumn. Acid-phosphatase activity (p < 0.001) and protease activity (p < 0.003) were significantly affected by the Salix clone, whereas arylsulfatase and alkaline-phosphatase activities did not show clone-specific differences. All enzyme activities reached their maxima in the summer sampling. Rhizosphere colonization with Acremonium butyri,Cladosporium herbarum, and Penicillium janthinellum contributed significantly to explain the activities of acid phosphatase. Rhizosphere colonization with Cylindrocarpon destructans, Penicillium spinulosum, Plectosphaerella cucumerina, and Trichoderma polysporum contributed significantly to explain the arylsulfatase activities. Effects of the saprotrophic fungal colonization densities on the protease activities in the rhizosphere were low. Acid- and alkaline-phosphatase and arylsulfatase activities in the rhizosphere soil were stronger affected by the composition of the saprotrophic fungal communities than by the Salix clone itself. In conclusion, the colonization density of some saprotrophic microfungi in the rhizosphere contributed to explain shifts in soil-enzyme activities of the P and S cycles under different willow clones. [source]


    Co-existing grass species have distinctive arbuscular mycorrhizal communities

    MOLECULAR ECOLOGY, Issue 11 2003
    P. Vandenkoornhuyse
    Abstract Arbuscular mycorrhizal (AM) fungi are biotrophic symbionts colonizing the majority of land plants, and are of major importance in plant nutrient supply. Their diversity is suggested to be an important determinant of plant community structure, but the influence of host-plant and environmental factors on AM fungal community in plant roots is poorly documented. Using the terminal restriction fragment length polymorphism (T-RFLP) strategy, the diversity of AM fungi was assessed in 89 roots of three grass species (Agrostis capillaris, Festuca rubra, Poa pratensis) that co-occurred in the same plots of a field experiment. The impact of different soil amendments (nitrogen, lime, nitrogen and lime) and insecticide application on AM fungal community was also studied. The level of diversity found in AM fungal communities using the T-RFLP strategy was consistent with previous studies based on clone libraries. Our results clearly confirm that an AM fungal host-plant preference exists, even between different grass species. AM communities colonizing A. capillaris were statistically different from the others (P < 0.05). Although grass species evenness changed in amended soils, AM fungal community composition in roots of a given grass species remained stable. Conversely, in plots where insecticide was applied, we found higher AM fungal diversity and, in F. rubra roots, a statistically different AM fungal community. [source]


    Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest

    MOLECULAR ECOLOGY, Issue 12 2002
    R. Husband
    Abstract We have used molecular techniques to investigate the diversity and distribution of the arbuscular mycorrhizal (AM) fungi colonizing tree seedling roots in the tropical forest on Barro Colorado Island (BCI), Republic of Panama. In the first year, we sampled newly emergent seedlings of the understory treelet Faramea occidentalis and the canopy emergent Tetragastris panamensis, from mixed seedling carpets at each of two sites. The following year we sampled surviving seedlings from these cohorts. The roots of 48 plants were analysed using AM fungal-specific primers to amplify and clone partial small subunit (SSU) ribosomal RNA gene sequences. Over 1300 clones were screened for random fragment length polymorphism (RFLP) variation and 7% of these were sequenced. Compared with AM fungal communities sampled from temperate habitats using the same method, the overall diversity was high, with a total of 30 AM fungal types identified. Seventeen of these types have not been recorded previously, with the remainder being similar to types reported from temperate habitats. The tropical mycorrhizal population showed significant spatial heterogeneity and nonrandom associations with the different hosts. Moreover there was a strong shift in the mycorrhizal communities over time. AM fungal types that were dominant in the newly germinated seedlings were almost entirely replaced by previously rare types in the surviving seedlings the following year. The high diversity and huge variation detected across time points, sites and hosts, implies that the AM fungal types are ecologically distinct and thus may have the potential to influence recruitment and host composition in tropical forests. [source]


    Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere

    NEW PHYTOLOGIST, Issue 2 2009
    A. Jumpponen
    Summary ,,This study targeted the fungal communities in the phyllosphere of Quercus macrocarpa and compared the fungal species richness, diversity and community composition among trees located within and outside a small urban center using recently developed 454 sequencing and DNA tagging. ,,The results indicate that the fungal phyllosphere communities are extremely diverse and strongly dominated by ascomycetes, with Microsphaeropsis [two Operational Taxonomic Units (OTUs); 23.6%], Alternaria (six OTUs; 16.1%), Epicoccum (one OTU; 6.0%) and Erysiphe (two OTUs; 5.9%) as the most abundant genera. ,,Although the sequencing effort averaged 1000 reads per tree and detected nearly 700 distinct molecular OTUs at 95% internal transcribed spacer 1 similarity, the richness of the hyperdiverse phyllosphere communities could not be reliably estimated as nearly one-half of the molecular OTUs were singletons. ,,The fungal communities within and outside the urban center differed in richness and diversity, which were lower within the urban development. The two land-use types contained communities that were distinct and more than 10% of the molecular OTUs differed in their frequency. [source]


    454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity

    NEW PHYTOLOGIST, Issue 2 2009
    M. Buée
    Summary ,,Soil fungi play a major role in ecological and biogeochemical processes in forests. Little is known, however, about the structure and richness of different fungal communities and the distribution of functional ecological groups (pathogens, saprobes and symbionts). ,,Here, we assessed the fungal diversity in six different forest soils using tag-encoded 454 pyrosequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS-1). No less than 166 350 ITS reads were obtained from all samples. In each forest soil sample (4 g), approximately 30 000 reads were recovered, corresponding to around 1000 molecular operational taxonomic units. ,,Most operational taxonomic units (81%) belonged to the Dikarya subkingdom (Ascomycota and Basidiomycota). Richness, abundance and taxonomic analyses identified the Agaricomycetes as the dominant fungal class. The ITS-1 sequences (73%) analysed corresponded to only 26 taxa. The most abundant operational taxonomic units showed the highest sequence similarity to Ceratobasidium sp., Cryptococcus podzolicus, Lactarius sp. and Scleroderma sp. ,,This study validates the effectiveness of high-throughput 454 sequencing technology for the survey of soil fungal diversity. The large proportion of unidentified sequences, however, calls for curated sequence databases. The use of pyrosequencing on soil samples will accelerate the study of the spatiotemporal dynamics of fungal communities in forest ecosystems. [source]


    Ectomycorrhizal fungal succession in mixed temperate forests

    NEW PHYTOLOGIST, Issue 2 2007
    Brendan D. Twieg
    Summary ,,Ectomycorrhizal (ECM) fungal communities of Douglas-fir (Pseudotsuga menziesii) and paper birch (Betula papyrifera) were studied along a chronosequence of forest development after stand-replacing disturbance. Previous studies of ECM succession did not use molecular techniques for fungal identification or lacked replication, and none examined different host species. ,,Four age classes of mixed forests were sampled: 5-, 26-, 65-, and 100-yr-old, including wildfire-origin stands from all four classes and stands of clearcut origin from the youngest two classes. Morphotyping and DNA sequences were used to identify fungi on ECM root tips. ,,ECM fungal diversities were lower in 5-yr-old than in older stands on Douglas-fir, but were similar among age classes on paper birch. Host-specific fungi dominated in 5-yr-old stands, but host generalists were dominant in the oldest two age classes. ECM fungal community compositions were similar in 65- and 100-yr-old stands but differed among all other pairs of age classes. ,,Within the age range studied, site-level ECM fungal diversity reached a plateau by the 26-yr-old age class, while community composition stabilized by the 65-yr-old class. Simple categories such as ,early stage', ,multi stage', and ,late stage' were insufficient to describe fungal species' successional patterns. Rather, ECM fungal succession may be best described in the context of stand development. [source]


    Long-term increase in nitrogen supply alters above- and below-ground ectomycorrhizal communities and increases the dominance of Russula spp. in a temperate oak savanna

    NEW PHYTOLOGIST, Issue 1 2003
    Peter G. Avis
    Summary ,,Here we examine the effects of increased nitrogen (N) supply on the ectomycorrhizal fungal communities of a temperate oak savanna. ,,In a 16-yr N-addition experiment in which replicate 1000 m2 plots received 0, 5.4 or 17 g N m,2 yr,1, ectomycorrhizal sporocarp production was measured in the 14th, 15th and 16th year of fertilization. Ectomycorrhizal fungi (EMF) colonizing roots were examined by morphotyping-PCR-RFLP and sequence analysis in the 14th and 15th year of fertilization. ,,Total sporocarp richness was reduced by > 50% in both fertilization treatments in all 3 yrs, whereas Russula spp. produced approx. five times more sporocarps with 17 g N m,2 yr,1. Below-ground, treatment-scale species richness and species area curves were lower with 17 g N m,2 yr,1 but richness, diversity indices and evenness at smaller spatial scales were not. Dominant fungi colonizing roots included Cenococcum geophilum, common in all treatments, Cortinarius spp., dominant in unfertilized plots, and Russula spp., dominant with 17 g N m,2 yr,1. ,,Communities of EMF in this temperate deciduous ecosystem responded to N addition similarly to those of coniferous ecosystems in that increased N supply altered EMF diversity and community composition but differently in that dominance of Russula spp. increased. [source]


    Fungal community diversity and soil health in intensive potato cropping systems of the east Po valley, northern Italy

    ANNALS OF APPLIED BIOLOGY, Issue 2 2009
    L.M. Manici
    Abstract An ecological approach was used to investigate the relationship between diversity of soil fungal communities and soil-borne pathogen inoculum in a potato growing area of northern Italy affected by yield decline. The study was performed in 14 sites with the same tillage management practices: 10 named ,potato sites', that for many years had been intensely cultivated with potatoes, and 4 named ,rotation sites', subject to a 4-year rotation without potatoes or any recurrent crop for many years. Fungal communities were recorded using conventional (soil fungi by plate count and endophytic fungi as infection frequency on pot-grown potato plant roots in soil samples) and molecular approaches [Basidiomycetes and Ascomycetes with specific and denaturing gradient gel electrophoresis (DGGE) analysis]. Diversity of fungal communities in potato sites was significantly lower than that in rotation sites. In addition, fungal communities in rotation sites showed lower Berger,Parker dominance than those in the potato sites, suggesting that rotation sites had a higher diversity as well as a better fungal community balance than potato sites. The ANalysis Of SIMilarity test of soil fungi and root endophytic fungi revealed that the two cropping systems differed significantly for species composition. Root endophytic fungal communities showed a greater ability to colonise potato roots in soil samples from potato sites than those from rotation sites. Moreover, the majority of endophytic root fungal community species in potato sites belonged to the potato root rot complex and storage disease (Colletotrichum coccodes, Fusarium solani and Fusarium oxysporum), while those in rotation sites were mainly ubiquitous or saprobic fungi. Soil rDNA analyses showed that Ascomycetes were much more frequent than Basidiomycetes in all the soils examined. DGGE analysis, with the Ascomycete-specific primer (ITS1F/ITS4A), did not reveal distinctions between the communities found at the potato and rotation sites, although the same analysis showed differences between the communities of Basidiomycetes (specific primer ITS1F/ITS4B). These findings showed that recurrent potato cropping affected diversity and composition of soil fungal communities and induced a shift in specialisation of the endophytic fungi towards potato. [source]


    Mammal mycophagy and fungal spore dispersal across a steep environmental gradient in eastern Australia

    AUSTRAL ECOLOGY, Issue 1 2009
    KARL VERNES
    Abstract We examined changes in the types of fungi consumed by six species of small mammals across a habitat gradient in north-eastern New South Wales that graded from swamp, to woodland, to open forest and then to rainforest. All mammals ate some fungus, but only bush rats (Rattus fuscipes) regularly did so, and their diet included most of the fungal taxa that we identified across all mammals in the study. The composition of bush rat diet changed significantly with each change in habitat from woodland, to forest, to rainforest. In particular, there was a significant difference in the diets of rats caught either side of the open forest-rainforest ecotone, which marks the change in fungal community from one dominated by ectomycorrhizal fungi, to a community dominated by arbuscular mycorrhizal fungi. Movement patterns of bush rats living around the open forest-rainforest ecotone suggest that they transport fungal spores between these contrasting fungal communities. Therefore, bush rats have the potential, by way of spore dispersal, to influence the structure of vegetation communities. [source]


    Aerobic Heterotrophic Bacterial and Fungal Communities in the Topsoil of Omo Biosphere Reserve in Southwestern Nigeria,

    BIOTROPICA, Issue 2 2000
    A. I. Okoh
    ABSTRACT As a part of the surveillance effort to monitor the ecological status of Omo Biosphere Reserve in the southwestern region of Nigeria, the aerobic heterotrophic bacterial and fungal communities of the topsoil were investigated in March 1995 and April 1996, before the onset of the rainy season. Four distinct wood-tree plantations, a core strict nature reserve (SNR) area, and a buffer zone were sampled. The topsoil samples (7.5 cm depth), including the litter, were taken with an auger (8 cm diameter) and transported to the laboratory in polyethylene bags. One-gram dry weight equivalent of sample was suspended in 10 ml sterile water, and serial dilutions from it were used for the estimation of bacterial and fungal densities. The bacterial and fungal densities ranged in the order of 106 and 103 cfu/g, respectively. Out of the 18 bacterial and 16 fungal species that were obtained, 13 and 12, respectively, were isolated from the core SNR. About 46 to 69 percent of the bacteria and 50 to 83 percent of the fungi species found in the SNR were absent in different combinations in the plantations and the buffer zone; these variations were significant among the sites monitored. The bacterial and fungal species compositions were significantly different between the SNR and each of the other sites. Proportional distributions within the sites were significant only for the bacterial communities. It would appear that plantation and human activities have caused significant changes in the distribution and species richness of the heterotrophic bacterial and fungal communities relative to the undisturbed SNR area of the Omo Biosphere Reserve. [source]


    Multiple profiling of soil microbial communities identifies potential genetic markers of metal-enriched sewage sludge

    FEMS MICROBIOLOGY ECOLOGY, Issue 3 2008
    Catriona A. Macdonald
    Abstract The long-term impacts of Cu- and Zn-rich sewage sludge additions on the structure of the microbial community in a field under pasture were investigated using a combination of multiplex-terminal restriction fragment length polymorphism (M-TRFLP) and T-RFLP profiling approaches. Changes in the community structure of bacteria, fungi, archaea and actinobacteria were observed in soils that had previously received Cu- (50,200 mg kg,1 soil) and Zn- (150,450 mg kg,1 soil) rich sewage sludge additions. Changes in the structure of all microbial groups measured were observed at Cu and Zn rates below the current EU guidelines (135 mg kg,1 Cu and 300 mg kg,1 Zn). The response of the fungal community, and to a lesser extent the bacterial and archaeal community, to Cu was dose dependent. The fungal community also showed a dose-dependent response to Zn, which was not observed in the other microbial groups assessed. Redundancy analysis demonstrated that individual terminal restriction fragments responded to both Cu and Zn and these may have potential as genetic markers of long-term metal effects in soil. [source]


    Comparative single-strand conformation polymorphism (SSCP) and microscopy-based analysis of nitrogen cultivation interactive effects on the fungal community of a semiarid steppe soil

    FEMS MICROBIOLOGY ECOLOGY, Issue 2-3 2001
    Jennifer L. Lowell
    Abstract The effects of nitrogen accretion on fungal diversity and community structure in early-seral (cultivated) and native (uncultivated) shortgrass steppe soils were evaluated using single-strand conformation polymorphism (SSCP) and microscopy in a comparative experiment. Selected haplotypes generated from fungal 18S gene fragments were also sequenced for species identification. Microscopy-based analyses showed significantly shorter fungal hyphal lengths in the early-seral control plots in comparison with the native control plots (P<0.0003), independent of nitrogen addition. Although diversity indices did not show significant differences between the plots, SSCP analyses indicated that fungal community structure differed in the native and early-seral control sites. In nitrogen-amended sites, gene sequences from dominant haplotypes indicated a shift to a more common nitrogen-impacted fungal community. While nitrogen amendments appear to be more important than cultivation in influencing these soil fungal communities, hyphal lengths were only decreased due to cultivation. The use of microscopic and molecular techniques, as carried out in this study, provided integrative information concerning fungal community responses to wide spread stresses being imposed globally on terrestrial ecosystems, that is not provided by the individual techniques. [source]


    Co-existing grass species have distinctive arbuscular mycorrhizal communities

    MOLECULAR ECOLOGY, Issue 11 2003
    P. Vandenkoornhuyse
    Abstract Arbuscular mycorrhizal (AM) fungi are biotrophic symbionts colonizing the majority of land plants, and are of major importance in plant nutrient supply. Their diversity is suggested to be an important determinant of plant community structure, but the influence of host-plant and environmental factors on AM fungal community in plant roots is poorly documented. Using the terminal restriction fragment length polymorphism (T-RFLP) strategy, the diversity of AM fungi was assessed in 89 roots of three grass species (Agrostis capillaris, Festuca rubra, Poa pratensis) that co-occurred in the same plots of a field experiment. The impact of different soil amendments (nitrogen, lime, nitrogen and lime) and insecticide application on AM fungal community was also studied. The level of diversity found in AM fungal communities using the T-RFLP strategy was consistent with previous studies based on clone libraries. Our results clearly confirm that an AM fungal host-plant preference exists, even between different grass species. AM communities colonizing A. capillaris were statistically different from the others (P < 0.05). Although grass species evenness changed in amended soils, AM fungal community composition in roots of a given grass species remained stable. Conversely, in plots where insecticide was applied, we found higher AM fungal diversity and, in F. rubra roots, a statistically different AM fungal community. [source]


    Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest

    NEW PHYTOLOGIST, Issue 3 2007
    Björn D. Lindahl
    Summary ,,Our understanding of how saprotrophic and mycorrhizal fungi interact to re-circulate carbon and nutrients from plant litter and soil organic matter is limited by poor understanding of their spatiotemporal dynamics. ,,In order to investigate how different functional groups of fungi contribute to carbon and nitrogen cycling at different stages of decomposition, we studied changes in fungal community composition along vertical profiles through a Pinus sylvestris forest soil. We combined molecular identification methods with 14C dating of the organic matter, analyses of carbon:nitrogen (C:N) ratios and 15N natural abundance measurements. ,,Saprotrophic fungi were primarily confined to relatively recently (< 4 yr) shed litter components on the surface of the forest floor, where organic carbon was mineralized while nitrogen was retained. Mycorrhizal fungi dominated in the underlying, more decomposed litter and humus, where they apparently mobilized N and made it available to their host plants. ,,Our observations show that the degrading and nutrient-mobilizing components of the fungal community are spatially separated. This has important implications for biogeochemical studies of boreal forest ecosystems. [source]


    The North American cranberry fruit rot fungal community: a systematic overview using morphological and phylogenetic affinities

    PLANT PATHOLOGY, Issue 6 2009
    J. J. Polashock
    Cranberry fruit rot (CFR) is caused by many species of fungi, with the contribution of any given species to the disease complex varying among plantings of Vaccinium macrocarpon within a site, sites within regions, and among regions and years. This study assessed the morphological and molecular variability of five widespread CFR-causing fungi: Phyllosticta vaccinii, Coleophoma empetri, Colletotrichum acutatum, Colletotrichum gloeosporioides and Physalospora vaccinii. Although the majority of isolates had morphological characteristics consistent with published descriptions, some were atypical. For example, non-chromogenic isolates of C. acutatum were recovered from British Columbia and white isolates of Physalospora vaccinii were recovered in addition to the more common dark isolates. On the basis of sequence analysis of the ITS and large subunit rDNA (LSU), it appears that Phyllosticta vaccinii, C. empetri, C. gloeosporioides and C. acutatum are genetically uniform on cranberry in North America. This suggests the possibility that these fungal species were introduced to cultivated cranberries and concomitantly moved with planting material to new locations. In contrast, white isolates of Physalospora had ITS and LSU sequences distinct from those of their dark counterparts, with phylogenetic analyses suggesting that these isolates represent either different species or distinct members of highly divergent populations. Taxonomic placement of all species based on phylogenetic relationships was consistent with morphological placement, with the exception of Physalospora vaccinii. Unlike other Physalospora species, CFR isolates of Physalospora vaccinii were not allied with the Xylariomycetidae; instead, these fungi were members of the Sordariomycetidae. A deeper taxonomic analysis is needed to resolve this inconsistency in familial affiliation. [source]


    Mammal mycophagy and fungal spore dispersal across a steep environmental gradient in eastern Australia

    AUSTRAL ECOLOGY, Issue 1 2009
    KARL VERNES
    Abstract We examined changes in the types of fungi consumed by six species of small mammals across a habitat gradient in north-eastern New South Wales that graded from swamp, to woodland, to open forest and then to rainforest. All mammals ate some fungus, but only bush rats (Rattus fuscipes) regularly did so, and their diet included most of the fungal taxa that we identified across all mammals in the study. The composition of bush rat diet changed significantly with each change in habitat from woodland, to forest, to rainforest. In particular, there was a significant difference in the diets of rats caught either side of the open forest-rainforest ecotone, which marks the change in fungal community from one dominated by ectomycorrhizal fungi, to a community dominated by arbuscular mycorrhizal fungi. Movement patterns of bush rats living around the open forest-rainforest ecotone suggest that they transport fungal spores between these contrasting fungal communities. Therefore, bush rats have the potential, by way of spore dispersal, to influence the structure of vegetation communities. [source]