Home About us Contact | |||
Fungal Associations (fungal + association)
Selected AbstractsMorphological and Molecular Evidence of Arbuscular Mycorrhizal Fungal Associations in Costa Rican Epiphytic Bromeliads,BIOTROPICA, Issue 2 2005Annette R. Rowe ABSTRACT Arbuscular mycorrhizal fungi influence the growth, morphology, and fitness of a variety of plant species, but little is known of the arbuscular mycorrhizal (AM) fungal associations of plant species in forest canopies. Plant species' associations with AM fungi are most often elucidated by examining the roots for fungal structures; however, morphological data may provide a limited resolution on a plant's mycorrhizal status. We combined a traditional staining technique with a molecular marker (the 18S ribosomal gene) to determine whether or not a variety of epiphytic bromeliads form arbuscular mycorrhizal fungal associations. Using these methods we show that the epiphytic bromeliad Vriesea werkleana forms arbuscular mycorrhizal fungal associations with members of the genus Glomus. AM fungal sequences of this plant species formed three distinct clades nested within a larger Glomus clade; two of the clades did not group with any previously sequenced lineage of Glomus. Novel clades may represent novel species. Although Vriesea werkleana is associated with multiple AM fungal species, each individual plant is colonized by a single lineage. The combination of morphological and molecular methods provides a practical approach to the characterization of the mycorrhizal status of epiphytic bromeliads, and perhaps other tropical epiphytes. [source] Compatible and Incompetent Paxillus involutus Isolates for Ectomycorrhiza Formation in vitro with Poplar (Populus×canescens) Differ in H2O2 ProductionPLANT BIOLOGY, Issue 1 2004A. Gafur Abstract: Isolates of Paxillus involutus (Batsch) Fr. collected from different hosts and environmental conditions were screened for their ability to form ectomycorrhizal symbiosis with hybrid poplar P.×canescens (= Populus tremula L. ×P. alba) in vitro. The ability to form ectomycorrhiza varied between the fungal isolates and was not correlated with the growth rate of the fungi on agar-based medium. The isolate MAJ, which was capable of mycorrhiza synthesis under axenic conditions, and the incompetent isolate NAU were characterized morphologically and anatomically. MAJ formed a typical hyphal mantle and a Hartig net, whereas NAU was not able to penetrate the host cell walls and caused thickenings of the outer cell walls of the host. MAJ, but not NAU, displayed strong H2O2 accumulation in the outer hyphal mantle. Increases in H2O2 in the outer epidermal walls and adjacent hyphae of the incompetent isolate were moderate. No increases of H2O2 in response to the mycobionts were found inside roots. Suggested functions of H2O2 production in the outer hyphal mantle of the compatible interaction are: growth regulation of the host's roots, defence against other invading microbes, or increasing plant-innate immunity. The system established here for P.×canescens compatible and incompetent fungal associations will be useful to take advantage of genomic information now available for poplar to study tree-fungal interactions at the molecular and physiological level. [source] Morphological and Molecular Evidence of Arbuscular Mycorrhizal Fungal Associations in Costa Rican Epiphytic Bromeliads,BIOTROPICA, Issue 2 2005Annette R. Rowe ABSTRACT Arbuscular mycorrhizal fungi influence the growth, morphology, and fitness of a variety of plant species, but little is known of the arbuscular mycorrhizal (AM) fungal associations of plant species in forest canopies. Plant species' associations with AM fungi are most often elucidated by examining the roots for fungal structures; however, morphological data may provide a limited resolution on a plant's mycorrhizal status. We combined a traditional staining technique with a molecular marker (the 18S ribosomal gene) to determine whether or not a variety of epiphytic bromeliads form arbuscular mycorrhizal fungal associations. Using these methods we show that the epiphytic bromeliad Vriesea werkleana forms arbuscular mycorrhizal fungal associations with members of the genus Glomus. AM fungal sequences of this plant species formed three distinct clades nested within a larger Glomus clade; two of the clades did not group with any previously sequenced lineage of Glomus. Novel clades may represent novel species. Although Vriesea werkleana is associated with multiple AM fungal species, each individual plant is colonized by a single lineage. The combination of morphological and molecular methods provides a practical approach to the characterization of the mycorrhizal status of epiphytic bromeliads, and perhaps other tropical epiphytes. [source] |