Fundamental Physics (fundamental + physics)

Distribution by Scientific Domains


Selected Abstracts


Fundamental physics: a new discipline

ASTRONOMY & GEOPHYSICS, Issue 3 2000
Tim Sumner
Tim Sumner of Imperial College summarizes the community report on fundamental physics in Britain prepared for PPARC. Click HERE to view the article. [source]


Electronic and Magnetic Properties of SrTiO3/LaAlO3 Interfaces from First Principles

ADVANCED MATERIALS, Issue 26-27 2010
Hanghui Chen
Abstract A number of intriguing properties emerge upon the formation of the epitaxial interface between the insulating oxides LaAlO3 and SrTiO3. These properties, which include a quasi two-dimensional conducting electron gas, low temperature superconductivity, and magnetism, are not present in the bulk materials, generating a great deal of interest in the fundamental physics of their origins. While it is generally accepted that the novel behavior arises as a result of a combination of electronic and atomic reconstructions and growth-induced defects, the complex interplay between these effects remains unclear. In this report, we review the progress that has been made towards unraveling the complete picture of the SrTiO3/LaAlO3 interface, focusing primarily on present ab initio theoretical work and its relation to the experimental data. In the process, we highlight some key unresolved issues and discuss how they might be addressed by future experimental and theoretical studies. [source]


Gravitational lensing by cosmic strings: what we learn from the CSL-1 case

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
M. V. Sazhin
ABSTRACT Cosmic strings were postulated by Kibble in 1976 and, from a theoretical point of view, their existence finds support in modern superstring theories, both in compactification models and in theories with extended additional dimensions. Their eventual discovery would lead to significant advances in both cosmology and fundamental physics. One of the most effective ways to detect cosmic strings is through their lensing signatures which appear to be significantly different from those introduced by standard lenses (i.e. compact clumps of matter). In 2003, the discovery of the peculiar object CSL-1 raised the interest of the physics community since its morphology and spectral features strongly argued in favour of it being the first case of gravitational lensing by a cosmic string. In this paper we provide a detailed description of the expected observational effects of a cosmic string and show, by means of simulations, the lensing signatures produced on background galaxies. While high angular resolution images obtained with Hubble Space Telescope, revealed that CSL-1 is a pair of interacting ellipticals at redshift 0.46, it represents a useful lesson to plan future surveys. [source]


Merger histories in warm dark matter structure formation scenarios

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2002
Alexander Knebe
Observations on galactic scales seem to be in contradiction with recent high-resolution N -body simulations. This so-called cold dark matter (CDM) crisis has been addressed in several ways, ranging from a change in fundamental physics by introducing self-interacting cold dark matter particles to a tuning of complex astrophysical processes such as global and/or local feedback. All these efforts attempt to soften density profiles and reduce the abundance of satellites in simulated galaxy haloes. In this paper, we explore a different approach that consists of filtering the dark matter power spectrum on small scales, thereby altering the formation history of low-mass objects. The physical motivation for damping these fluctuations lies in the possibility that the dark matter particles have a different nature, i.e. are warm (WDM) rather than cold. We show that this leads to some interesting new results in terms of the merger history and large-scale distribution of low-mass haloes, compared with the standard CDM scenario. However, WDM does not appear to be the ultimate solution, in the sense that it is not able to fully solve the CDM crisis, even though one of the main drawbacks, namely the abundance of satellites, can be remedied. Indeed, the cuspiness of the halo profiles still persists, at all redshifts, and for all haloes and sub-haloes that we investigated. Despite the persistence of the cuspiness problem of DM haloes, WDM seems to be still worth taking seriously, as it alleviates the problems of over-abundant sub-structures in galactic haloes and possibly the lack of angular momentum of simulated disc galaxies. WDM also lessens the need to invoke strong feedback to solve these problems, and may provide a natural explanation of the clustering properties and ages of dwarfs. [source]


Preface: phys. stat. sol. (c) 1/6

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 6 2004
Alexey Kavokin
This volume contains some of the papers presented at the Third International Conference on Physics of Light,Matter Coupling in Nanostructures (PLMCN3) which took place in Acireale, Sicily, from 1 to 4 October 2003. This meeting was fourth in the series started by PLMCN (St. Nectaire, 2000) and continued by PLMCN1 (Rome, 2001) and PLMCN2 (Rithymnon, 2002). All four conferences had the same format (about 70 participants), similar subject scope (interface between fundamental physics of light,matter coupling phenomena and applied research on new semiconductor materials and low-dimensional structures), and the proceedings of all of them have been published in physica status solidi. During these four years, a huge progress has been achieved in the understanding of exciton,polariton effects in microcavities. From the discovery of stimulated scattering of polaritons in 1999 to the first experimental reports of polariton Bose condensation and lasing, attention to this rapidly developing research area has been increased drastically. It is clear now that realization of a new generation of opto-electronic devices, referred to as polariton devices, is a realistic task for the coming decade. To achieve this target, much work has to be done both in fundamental research on dynamics of exciton,polaritons in microcavities and experimental realization of high-quality microcavities presumably based on wide-band gap semiconductors like GaN, ZnO, ZnSe, suitable for the observation of strong exciton,light coupling at room temperature. Forty nine research teams from twelve European countries have created a Polariton Consortium aimed at integration of the European research effort towards fabrication of polariton devices. PLMCN3 was not only an international conference devoted, in particular, to the research on polariton devices, but also the first scientific meeting of this community. The PLMCN meetings since the very first one have been sponsored by the US Army European Research Office (ERO). This time, with the initiative of Jim Harvey from ERO, a special session has been organized on the devices of 21st century, where a number of intriguing ideas have been proposed on new light sources, polariton lasers, and quantum memory elements based on microcavities. A special prize for the most crazy but realizable idea has been won by Misha Portnoi (Exeter) for the concept of a white diode based on a microcavity. Each PLMCN meeting brings participants from new countries. This time, the traditionally strong participation from Japan, Russia, the European Union and the USA has been enforced by a representative delegation from Israel and two speakers from Mexico. We are looking forward for new-comers from other countries not yet involved in the PLMCN community, to join us for the next meeting to be held in St. Petersburg on 29 June,3 July 2004. Sergey Ivanov from the A. F. Ioffe Institute chairs the local Organizing Committee of this future conference. We are going to keep a unique informal and creative atmosphere being characteristic of the PLMCN meetings. We invite all those who wish to know more about light,matter coupling in solids or to present any new interesting results in this area and at the same time to enjoy the beautiful city of St. Petersburg, to contact Sergey Ivanov (ivan@beam.ioffe.rssi.ru) or myself (kavokin@lasmea.univ-bpclermont.fr). We are looking forward to welcoming you in St. Petersburg! [source]


Fundamental physics: a new discipline

ASTRONOMY & GEOPHYSICS, Issue 3 2000
Tim Sumner
Tim Sumner of Imperial College summarizes the community report on fundamental physics in Britain prepared for PPARC. Click HERE to view the article. [source]