Full-sib Families (full-sib + family)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Oviposition deterrence of shoots and essential oils of Minthostachys spp. (Lamiaceae) against the potato tuber moth

JOURNAL OF APPLIED ENTOMOLOGY, Issue 2 2007
P. C. Guerra
Abstract:, The potato tuber moth is a noxious pest of potato in stores, where the use of repellent plants is an environmentally sound alternative to the application of chemical pesticides. We evaluated the protective effect of native Minthostachys species (Lamiaceae) against tuber infestation by the potato tuber moth in a rustic store in Cusco, Perú. We covered potato tubers with dried shoots of Minthostachys spicata and Minthostachys glabrescens and compared tuber damage with a control treatment of maize straw. We also conducted a no-choice oviposition bioassay in the laboratory, testing the oviposition deterrence of essential oils of M. spicata, M. glabrescens and Minthostachys mollis at natural concentrations. We recorded the number of eggs laid by mated moths on filter paper treated with essential oils of each of the three species and on two control treatments: hexane and untreated blank. Finally, we tested for differences in oviposition deterrence among five full-sib families of potato tuber moth raised under identical conditions. We found that dried, chopped leaves and flowers of Minthostachys species reduced the percentage of tuber damage in stores in comparison with the control (5% vs. 12%), but no difference in protection was found between species. Essential oils at natural concentrations deterred moth oviposition, reducing the number of eggs laid by about 80% compared with the control treatments; again, there were no significant differences between Minthostachys species. Finally, whereas we detected among-family variation in oviposition on filter papers treated with essential oils, no difference was found in the number of eggs laid on control substrates. Therefore, there was genetic variation for oviposition deterrence in the potato tuber moth and resistance to repellent plants might evolve thereafter. [source]


Ecological play in the coevolutionary theatre: genetic and environmental determinants of attack by a specialist weevil on milkweed

JOURNAL OF ECOLOGY, Issue 6 2003
Anurag A. Agrawal
Summary 1We studied the genetic and environmental determinants of attack by the specialist stem-attacking weevil, Rhyssomatus lineaticollis on Asclepias syriaca. 2In natural populations, the extent of stem damage and oviposition were positively correlated with stem width, but not stem height. We hypothesized that both genotypic and environmental factors influencing stem morphology would affect attack by weevils. 3In a common garden study with 21 full-sib families of milkweed, both phenotypic and genetic correlations indicated that weevils impose more damage and lay more eggs on thicker stemmed plants. 4Of three other putative resistance traits, only latex production showed a negative genetic correlation with weevil attack. 5When neighbouring grasses were clipped to reduce light competition, focal milkweed plants received up to 2.6 times the photosynthetically active radiation and 1.6 times the red to far red ratio of light compared with plants with intact grass neighbours. Focal milkweed plants were therefore released from the classic neighbour avoidance response and had 20% shorter internode lengths, were 30% shorter, and had 90% thicker stems compared with controls. 6Clipping of grass neighbours resulted in nearly 2.7 times the damage and oviposition by stem weevils, thus supporting the hypothesis of an environmental or trait-mediated indirect influence on resistance. 7Although attack of plants by weevils strongly increases the probability of stem mortality, thicker stems experience lower mortality, thus counteracting the selective impact of weevil-induced plant mortality. 8The determinants of attack on milkweeds include both genetic variation for stem thickness and an indirect environmental influence of plant neighbours. If milkweeds and weevils are coevolving, the interaction is diffuse because the ecological neighbourhood is likely to modify the patterns of reciprocal natural selection. [source]


Analysis of the incidence of infectious pancreatic necrosis mortality in pedigreed Atlantic salmon, Salmo salar L., populations

JOURNAL OF FISH DISEASES, Issue 11 2006
D R Guy
Abstract A total of 77 124 Atlantic salmon post-smolts, representing 197 full-sib families produced by 149 males and 197 females, experienced a field challenge from infectious pancreatic necrosis virus (IPNV), following transfer to three separate seawater sites. The first IPN mortality was observed 45 days after transfer, and the duration of the epidemic varied between 37 and 92 days among sites. Mortalities were traced to their parental families by PIT (Passive Integrated Transpondes) tag records and DNA genotyping. Full-sib family mean incidence of mortality was calculated for each family on each site. Heritabilities were estimated based on the heterogeneity of chi-square using incidence within half-sib families and the variance in incidence among full-sib families, both on the observed and underlying liability scale. The observed correlation among families across sites was used to estimate genetic correlations. The overall mortality rate was 10.8%, with only small differences between sites, ranging from 10.3% to 11.9%. Heritabilities on the liability scale were found to be moderate to strong, and ranged between 0.24 and 0.81, with a pooled estimate of 0.43, greater than is typically associated with disease traits. Genetic correlations among sites were all substantial, between 0.71 and 0.78, and indicated that a substantial component of the genetic variation displayed within sites was common to all. The results show that field challenges can yield very good genetic information on family differences in resistance, especially when replicated over sites, which may then be developed for use in selection for breeding strains of Atlantic salmon with greater resistance to IPN. [source]


MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce

NEW PHYTOLOGIST, Issue 4 2010
Igor A. Yakovlev
Summary ,Norway spruce expresses a temperature-dependent epigenetic memory from the time of embryo development, which thereafter influences the timing bud phenology. MicroRNAs (miRNAs)are endogenous small RNAs, exerting epigenetic gene regulatory impacts. We have tested for their presence and differential expression. ,We prepared concatemerized small RNA libraries from seedlings of two full-sib families, originated from seeds developed in a cold and warm environment. One family expressed distinct epigenetic effects while the other not. We used available plant miRNA query sequences to search for conserved miRNAs and from the sequencing we found novel ones; the miRNAs were monitored using relative real time-PCR. ,Sequencing identified 24 novel and four conserved miRNAs. Further screening of the conserved miRNAs confirmed the presence of 16 additional miRNAs. Most of the miRNAs were targeted to unknown genes. The expression of seven conserved and nine novel miRNAs showed significant differences in transcript levels in the full-sib family showing distinct epigenetic difference in bud set, but not in the nonresponding full-sib family. Putative miRNA targets were studied. ,Norway spruce contains a set of conserved miRNAs as well as a large proportion of novel nonconserved miRNAs. The differentially expression of specific miRNAs indicate their putative participation in the epigenetic regulation. [source]


Tolerance to apical and foliar damage: costs and mechanisms in Raphanus raphanistrum

OIKOS, Issue 12 2007
Elin Boalt
To study mechanisms underlying plant tolerance to herbivore damage, we used apical and foliar damage as experimental treatments to study whether there are similar tolerance mechanisms to different types of damage. We also studied whether tolerance to different types of damage are associated, and whether there is a cost involved in plant tolerance to different types of herbivore damage. Our greenhouse experiment involved 480 plants from 30 full-sib families of an annual weed Raphanus raphanistrum, wild radish, which were subjected to control and two different simulated herbivore damage treatments, apex removal and foliar damage of 30% of leaf area. Apical damage significantly decreased seed production, whereas foliar damage had no effect. There was a significant genetic variation for tolerance to foliar, but not apical damage. No costs were observed in terms of negative correlation between tolerance to either damage type and fitness of undamaged plants. Tolerances to apical and foliar damage were not significantly correlated with each other. We observed a larger number of significant associations between tolerance and reproductive traits than between tolerance and vegetative traits. Plant height and leaf size of damaged plants interacted in their association to tolerance to foliar damage. Inflorescence number and pollen quantity per flower of damaged plants were positively associated with tolerance to apical damage. In late-flowering genotypes, petal size of undamaged plants and pollen quantity of damaged plants were positively associated with tolerance to foliar damage. In summary, traits involved in floral display and male fitness were associated with plant tolerance to herbivore damage. [source]


QTL for body weight, morphometric traits and stress response in European sea bass Dicentrarchus labrax

ANIMAL GENETICS, Issue 4 2010
C. Massault
Summary Natural mating and mass spawning in the European sea bass (Dicentrarchus labrax L., Moronidae, Teleostei) complicate genetic studies and the implementation of selective breeding schemes. We utilized a two-step experimental design for detecting QTL in mass-spawning species: 2122 offspring from natural mating between 57 parents (22 males, 34 females and one missing) phenotyped for body weight, eight morphometric traits and cortisol levels, had been previously assigned to parents based on genotypes of 31 DNA microsatellite markers. Five large full-sib families (five sires and two dams) were selected from the offspring (570 animals), which were genotyped with 67 additional markers. A new genetic map was compiled, specific to our population, but based on the previously published map. QTL mapping was performed with two methods: half-sib regression analysis (paternal and maternal) and variance component analysis accounting for all family relationships. Two significant QTL were found for body weight on linkage group 4 and 6, six significant QTL for morphometric traits on linkage groups 1B, 4, 6, 7, 15 and 23 and three suggestive QTL for stress response on linkage groups 3, 14 and 23. The QTL explained between 8% and 38% of phenotypic variance. The results are the first step towards identifying genes involved in economically important traits like body weight and stress response in European sea bass. [source]


QTL for resistance to summer mortality and OsHV-1 load in the Pacific oyster (Crassostrea gigas)

ANIMAL GENETICS, Issue 4 2010
C. Sauvage
Summary Summer mortality is a phenomenon severely affecting the aquaculture production of the Pacific oyster (Crassostrea gigas). Although its causal factors are complex, resistance to mortality has been described as a highly heritable trait, and several pathogens including the virus Ostreid Herpes virus type 1 (OsHV-1) have been associated with this phenomenon. A QTL analysis for survival of summer mortality and OsHV-1 load, estimated using real-time PCR, was performed using five F2 full-sib families resulting from a divergent selection experiment for resistance to summer mortality. A consensus linkage map was built using 29 SNPs and 51 microsatellite markers. Five significant QTL were identified and assigned to linkage groups V, VI, VII and IX. Analysis of single full-sib families revealed differential QTL segregation between families. QTL for the two-recorded traits presented very similar locations, highlighting the interest of further study of their respective genetic controls. These QTL show substantial genetic variation in resistance to summer mortality, and present new opportunities for selection for resistance to OsHV-1. [source]


Mapping quantitative trait loci regulating chicken body composition traits

ANIMAL GENETICS, Issue 6 2009
Y. Gao
Summary Genome scans were conducted on an F2 resource population derived from intercross of the White Plymouth Rock with the Silkies Fowl to detect QTL affecting chicken body composition traits. The population was genotyped with 129 microsatellite markers and phenotyped for 12 body composition traits on 238 F2 individuals from 15 full-sib families. In total, 21 genome-wide QTL were found to be responsible for 11 traits, including two newly studied traits of proventriculus weight and shank girth. Three QTL were genome-wide significant: at 499 cm on GGA1 (explained 3.6% of phenotypic variance, P < 0.01) and 51 cm on GGA5 (explained 3.3% of phenotypic variance, P < 0.05) for the shank & claw weight and 502 cm on GGA1 (explained 1.4% of phenotypic variance, P < 0.05) for wing weight. The QTL on GGA1 seemed to have pleiotropic effects, also affecting gizzard weight at 490 cm, shank girth at 489 cm and intestine length at 481 cm. It is suggested that further efforts be made to understand the possible pleiotropic effects of the QTL on GGA1 and that on GGA5 for two shank-related traits. [source]


A SNP/microsatellite genetic linkage map of the Atlantic cod (Gadus morhua)

ANIMAL GENETICS, Issue 6 2009
T. Moen
Summary A first genetic linkage map of the Atlantic cod (Gadus morhua) was produced, based on segregation data from 12 full-sib families of Norwegian origin. The map contained 174 single nucleotide polymorphism markers and 33 microsatellites, distributed on 25 linkage groups and had a length of 1225 cM. A significant difference in recombination rates between sexes was found, the average ratio of female:male recombination rates being 1.78 ± 1.62 (SD). [source]


Genetic mapping of quantitative trait loci affecting susceptibility in chicken to develop pulmonary hypertension syndrome

ANIMAL GENETICS, Issue 6 2005
T. S. K. M. Rabie
Summary Pulmonary hypertension syndrome (PHS), also referred to as ascites syndrome, is a growth-related disorder of chickens frequently observed in fast-growing broilers with insufficient pulmonary vascular capacity at low temperature and/or at high altitude. A cross between two genetically different broiler dam lines that originated from the White Plymouth Rock breed was used to produce a three-generation population. This population was used for the detection and localization of quantitative trait loci (QTL) affecting PHS-related traits. Ten full-sib families consisting of 456 G2 birds were typed with 420 microsatellite markers covering 24 autosomal chromosomes. Phenotypic observations were collected on 4202 G3 birds and a full-sib across family regression interval mapping approach was used to identify QTL. There was statistical evidence for QTL on chicken chromosome 2 (GGA2), GGA4 and GGA6. Suggestive QTL were found on chromosomes 5, 8, 10, 27 and 28. The most significant QTL were located on GGA2 for right and total ventricular weight as percentage of body weight (%RV and %TV respectively). A related trait, the ratio of right ventricular weight as percentage to total ventricular weight (RATIO), reached the suggestive threshold on this chromosome. All three QTL effects identified on GGA2 had their maximum test statistic in the region flanked by markers MCW0185 and MCW0245 (335,421 cM). [source]


TYRP1 is associated with dun coat colour in Dexter cattle or how now brown cow?

ANIMAL GENETICS, Issue 3 2003
T. G. Berryere
Summary Tyrosinase related protein 1 (TYRP1), which is involved in the coat colour pathway, was mapped to BTA8 between microsatellites BL1080 and BM4006, using a microsatellite in intron 5 of TYRP1. The complete coding sequence of bovine TYRP1 was determined from cDNA derived from skin biopsies of cattle with various colours. Sequence data from exons 2,8 from cattle with diluted phenotypes was compared with that from non-diluted phenotypes. In addition, full-sib families of beef cattle generated by embryo transfer and half-sib families from traditional matings in which coat colour was segregating were used to correlate TYRP1 sequence variants with dilute coat colours. Two non-conservative amino acid changes were detected in Simmental, Charolais and Galloway cattle but these polymorphisms were not associated with diluted shades of black or red, nor with the dun coat colour of Galloway cattle or the taupe brown colour of Braunvieh and Brown Swiss cattle. However, in Dexter cattle all 25 cattle with a dun brown coat colour were homozygous for a H424Y change. One Dexter that was also homozygous Y434 was red because of an ,E+/E+' genotype at MC1R which lead to the production of only phaeomelanin. None of the 70 remaining black or red Dexter cattle were homozygous for Y434. This tyrosine mutation was not found in any of the 121 cattle of other breeds that were examined. [source]


Growth response of Nile tilapia fry to salinity stress in the presence of an ,internal reference' fish

AQUACULTURE RESEARCH, Issue 7 2005
Zubaida U Basiao
Abstract Growth of three strains of Oreochromis niloticus L. fry exposed to salinity stress in the presence of an internal reference fish were compared. The Central Luzon State University (CLSU) strain was obtained from the Freshwater Aquaculture Center, CLSU, Philippines. The ISRAEL strain was acquired from the Philippine government's Bureau of Fisheries and Aquatic Resources National Freshwater Fisheries Technology Center (BFAR-NFFTC), Munoz, Nueva Ecija. The National Inland Fisheries Institute (NIFI) strain was obtained from the NIFI, Bangkok, Thailand. Eight to nine full-sib families (replicates) per strain were split into two groups. One group was grown in freshwater for 2 weeks, acclimated to 32 ppt and reared for 2 weeks and finally grown in freshwater for another 2 weeks. Another group was contemporaneously grown in freshwater polyethylene tanks for 6 weeks. Each replicate family included a size-matched internal reference population of red tilapia strain. Two-way analysis of variance (anova) revealed no significant strain differences (P=0.081; r2=0.106). However, analysis of covariance with the internal reference strain used as a covariate showed significant (P=0.049; r2=0.638) strain effects on specific growth (based on standard length measurements). The ISRAEL strain showed consistently better growth rate in both saline and freshwater environments than the NIFI and CLSU strains. We estimated the statistical power of the two-way anova (,=,(k,,1)(factor MS,s2)/(k,s2); Zar 1984) to be ,0.30. There was a 70% probability of a Type II error and no true difference in the growth of the three strains was detected. The use of internal reference strain as a covariate improved the r2 from 0.106 to 0.638 and increased the efficiency of the test in detecting a true difference. Other strain comparison studies in our laboratory at the Southeast Asian Fisheries Development Center Aquaculture Department showed that the ISRAEL strain shows better growth than the NIFI and CLSU strains in a crowding stress tolerance experiment, when fed only with rice bran and under restrictive feeding regimes. [source]


Isolation and characterization of polymorphic microsatellite DNA markers in the brown sole, Pleuronectes herzensteini

MOLECULAR ECOLOGY RESOURCES, Issue 1 2007
S. G. KIM
Abstract New microsatellite DNA markers from brown sole were developed and characterized. Fourteen primer sets were designed from 40 microsatellite regions. Eight of 14 loci exhibited variations comprising 8,31 alleles. Observed and expected heterozygosities ranged from 0.611 to 0.833 and from 0.647 to 0.968 among 36 individuals, respectively. Phz3, Phz8 and Phz12 significantly deviated from Hardy,Weinberg equilibrium, and there was a significant linkage disequilibrium between Phz2 and Phz12. Seven of eight loci conformed to the Mendelian manner of inheritance in a full-sib family. Seven to four loci of three related species were cross-amplified by primers for brown sole. [source]


MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce

NEW PHYTOLOGIST, Issue 4 2010
Igor A. Yakovlev
Summary ,Norway spruce expresses a temperature-dependent epigenetic memory from the time of embryo development, which thereafter influences the timing bud phenology. MicroRNAs (miRNAs)are endogenous small RNAs, exerting epigenetic gene regulatory impacts. We have tested for their presence and differential expression. ,We prepared concatemerized small RNA libraries from seedlings of two full-sib families, originated from seeds developed in a cold and warm environment. One family expressed distinct epigenetic effects while the other not. We used available plant miRNA query sequences to search for conserved miRNAs and from the sequencing we found novel ones; the miRNAs were monitored using relative real time-PCR. ,Sequencing identified 24 novel and four conserved miRNAs. Further screening of the conserved miRNAs confirmed the presence of 16 additional miRNAs. Most of the miRNAs were targeted to unknown genes. The expression of seven conserved and nine novel miRNAs showed significant differences in transcript levels in the full-sib family showing distinct epigenetic difference in bud set, but not in the nonresponding full-sib family. Putative miRNA targets were studied. ,Norway spruce contains a set of conserved miRNAs as well as a large proportion of novel nonconserved miRNAs. The differentially expression of specific miRNAs indicate their putative participation in the epigenetic regulation. [source]


Genetic parameters and QTL analysis of ,13C and ring width in maritime pine

PLANT CELL & ENVIRONMENT, Issue 8 2002
O. Brendel
Abstract Classical quantitative genetics and quantitative trait dissection analysis (QTL) approaches were used in order to investigate the genetic determinism of wood cellulose carbon isotope composition (,13C, a time integrated estimate of water use efficiency) and of diameter growth and their relationship on adult trees (15 years) of a forest tree species (maritime pine). A half diallel experimental set-up was used to (1) estimate heritabilities for ,13C and ring width and (2) to decompose the phenotypic ,13C/growth correlation into its genetic and environmental components. Considerable variation was found for ,13C (range of over 3,) and for ring width (range of over 5 mm) and significant heritabilities (narrow sense 0·17/0·19 for ,13C and ring width, respectively, 100% additivity). The significant phenotypic correlation between ,13C and ring width was not determined by the genetic component, but was attributable to environmental components. Using a genetic linkage map of a full-sib family, four significant and four suggestive QTLs were detected for ,13C, the first for ,13C in a forest tree species, as far as known to the authors. Two significant and four suggestive QTLs were found for ring width. No co-location of QTLs was found between ,13C and growth. [source]


Genetic linkage map of the pearl oyster, Pinctada martensii (Dunker)

AQUACULTURE RESEARCH, Issue 1 2009
Yaohua Shi
Abstract Genetic linkage maps were constructed with amplified fragment length polymorphism (AFLP) and microsatellite markers for the pearl oyster, Pinctada martensii (Dunker), the main bivalve used for marine pearl production in Asia. Twenty-four AFLP and 84 microsatellite primer pairs were used for linkage analysis in a full-sib family with two parents and 78 offspring. Of the 2357 AFLP fragments generated, 394 (16.7%) were polymorphic and segregating. Most (340 or 86.2%) of the markers segregated according to expected Mendelian ratios. Female and male linkage maps were constructed using 230 and 189 markers, including 15 and 10 microsatellites respectively. The female map consisted of 110 markers in 15 linkage groups, covering 1415.9 cM, with an average interval of 14.9 cM. The male map consisted of 98 markers in 16 linkage groups, with a total length of 1323.2 cM and an average interval of 16.1 cM. When unlinked doublets were considered, genome coverages were 78.5% for the female and 73.5% for the male map. Although preliminary, the genetic maps constructed here should be useful for future linkage and quantitative trait loci mapping efforts. [source]


Heritability and genetic correlation of abdominal versus caudal vertebral number in the medaka (Actinopterygii: Adrianichthyidae): genetic constraints on evolution of axial patterning?

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009
KAZUNORI YAMAHIRA
Variation in the number of abdominal vs. caudal vertebrae is an important source of morphological diversification of fish. It is not clear, however, whether abdominal and caudal regions evolve independently. Regressions of offspring on parents demonstrated substantial additive genetic variation within populations, i.e. heritability, in both abdominal and caudal vertebral numbers of the medaka (Oryzias latipes). However, the heritability of caudal vertebrae tended to be smaller than that of abdominal vertebrae in some estimations, suggesting that abdominal and caudal regions are controlled by separate developmental modules. Furthermore, genetic correlation between abdominal and caudal vertebral numbers, estimated using full-sib family means, was negative but weak, supporting independent evolution. In addition, substantial genetic differentiation among populations was demonstrated in abdominal vertebral numbers, but not in caudal numbers. These results support our view that Jordan's rule, a geographical tendency for fish from higher latitudes to have more vertebrae, in this fish reflects local adaptations of abdominal vertebral numbers. In contrast, the low heritability of caudal vertebrae may reflect the intrinsic invariability of genes associated with a change in caudal vertebral numbers. This genetic constraint may have restricted morphological diversification of not only the medaka, but also the Order Beloniformes as a whole. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96, 867,874. [source]