Full-length

Distribution by Scientific Domains
Distribution within Chemistry

Terms modified by Full-length

  • full-length cDNA
  • full-length cdna
  • full-length hbv genome
  • full-length protein
  • full-length sequence
  • full-length transcript

  • Selected Abstracts


    Characterization of a novel Toll/interleukin-1 receptor (TIR)-TIR gene differentially expressed in common bean (Phaseolus vulgaris cv. Othello) undergoing a defence response to the geminivirus Bean dwarf mosaic virus

    MOLECULAR PLANT PATHOLOGY, Issue 2 2007
    YOUNG-SU SEO
    SUMMARY Common bean (Phaseolus vulgaris L.) cultivar (cv.) Othello develops a hypersensitive response-associated vascular resistance to infection by Bean dwarf mosaic virus (BDMV), a single-stranded DNA virus (genus Begomovirus, family Geminiviridae). A PCR-based cDNA subtraction approach was used to identify genes involved in this resistance response. Eighteen clones, potentially involved with BDMV resistance, were identified based upon being up-regulated in BDMV-infected tissues and/or having sequence similarity with known resistance-associated genes. Analysis of these clones revealed potential genes involved in pathogen defence, including pathogenesis-related protein genes and resistance gene analogues (RGAs). Further characterization of one RGA, F1-10, revealed that it encodes a predicted protein with a double Toll/interleukin-1 receptor (TIR) motif. Full-length (F1-10) and spliced (F1-10sp) forms of the RGA were strongly up-regulated in BDMV-infected cv. Othello hypocotyl tissues by 4 days post-inoculation, but not in equivalent mock-inoculated tissues. In agroinfiltration experiments, F1-10, but not F1-10sp, mediated resistance to BDMV in the susceptible common bean cv. Topcrop. By contrast, transgenic Nicotiana benthamiana lines expressing F1-10 or F1-10sp were not resistant to BDMV. Interestingly, when these transgenic lines were inoculated with the potyvirus Bean yellow mosaic virus, some F1-10 lines showed a more severe symptom phenotype compared with non-transgenic control plants. Based on these findings, F1-10 was named: Phaseolus vulgaris VIRUS response TIR-TIR GENE 1 (PvVTT1). [source]


    Fibril protein fragmentation pattern in systemic AL-amyloidosis

    THE JOURNAL OF PATHOLOGY, Issue 4 2009
    Stina Enqvist
    Abstract Immunoglobulin light chain (AL)-amyloidosis was one of the first types of amyloidosis discovered and still little is known about its pathogenic mechanisms. One major obstacle is the very heterogeneous condition; in fact, every patient could be considered to have their own disease since symptoms and outcome vary enormously. The reason for this is not known but intrinsic factors of the immunoglobulin light chain (LC) and the fact that every LC is unique seem to be important. Post-translational modifications such as glycosylation and proteolysis are most certainly involved. By using western blotting, we studied in detail the proteolytic pattern in six patients with AL-amyloidosis of kappa type with the aid of three peptide antisera against two domains in the constant segment and one conserved domain in framework 3 of the variable region. Materials from one to five organs were analysed. The result clearly demonstrates that the fragmentation pattern was similar in amyloid of different organs in one patient but differed greatly between patients. Full-length, N-, and C-terminal fragments were detected with the three antisera. The results strongly support the hypothesis that proteolytic cleavage occurs after fibril formation. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]


    Measurement of the force and torque produced in the calcium response of reactivated rat sperm flagella

    CYTOSKELETON, Issue 1 2001
    Mark J. Moritz
    Abstract Rat sperm that are demembranated with Triton X-100 and reactivated with Mg-ATP show a strong mechanical response to the presence of free calcium ion. At pCa < 4, the midpiece region of the flagellum develops a strong and sustained curvature that gives the cell the overall appearance of a fishhook [Lindemann and Goltz, 1988: Cell Motil. Cytoskeleton 10:420,431]. In the present study, the force and torque that maintain the calcium-induced hook have been examined quantitatively. In addition, full-length and shortened flagella were manipulated to evaluate the plasticity of the hooks and determined the critical length necessary for maintaining the curvature. The hooks were found to be highly resilient, returning to their original configuration (>95%) after being straightened and released. The results from manipulating the shortened flagella suggest that the force holding the hook in the curved configuration is generated in the basal 60 ,m of the flagellum. The force required to straighten the calcium-induced hooks was measured with force-calibrated glass microprobes, and the bending torque was calculated from the measured force. The force and torque required to straighten the flagellum were found to be proportional to the change in curvature of the hooked region of the flagellum, suggesting an elastic-like behavior. The average torque to open the hooks to a straight position was 2.6 (±1.4) × 10 -7 dyne × cm (2.6 × 10 -14 N × m) and the apparent stiffness was 4.3 (±1.3) × 10 -10 dyne × cm2 (4.3 × 10 -19 N × m2). The stiffness of the hook was determined to be approximately one quarter the rigor stiffness of a rat sperm flagellum measured under comparable conditions. Cell Motil. Cytoskeleton 49:33,40, 2001. © 2001 Wiley-Liss, Inc. [source]


    Differential expression of TrkB isoforms switches climbing fiber-Purkinje cell synaptogenesis to selective synapse elimination

    DEVELOPMENTAL NEUROBIOLOGY, Issue 10 2009
    Rachel M. Sherrard
    Abstract Correct neural function depends on precisely organized connectivity, which is refined from broader projections through synaptic/collateral elimination. In the rat, olivocerebellar topography is refined by regression of multiple climbing fiber (CF) innervation of Purkinje cells (PC) during the first two postnatal weeks. The molecules that initiate this regression are not fully understood. We assessed the role of cerebellar neurotrophins by examining tropomycin receptor kinase (Trk) receptor expression in the inferior olive and cerebellum between postnatal days (P)3-7, when CF-PC innervation changes from synapse formation to selective synapse elimination, and in a denervation-reinnervation model when synaptogenesis is delayed. Trks A, B, and C are expressed in olivary neurons; although TrkA was not transported to the cerebellum and TrkC was unchanged during innervation and reinnervation, suggesting that neither receptor is involved in CF-PC synaptogenesis. In contrast, both total and truncated TrkB (TrkB.T) increased in the olive and cerebellum from P4, whereas full-length and activated phosphorylated TrkB (phospho-TrkB) decreased from P4-5. This reveals less TrkB signaling at the onset of CF regression. This expression pattern was reproduced during CF-PC reinnervation: in the denervated hemicerebellum phospho-TrkB decreased as CF terminals degenerated, then increased in parallel with the delayed neosynaptogenesis as new CFs reinnervated the denervated hemicerebellum. In the absence of this signaling, CF reinnervation did not develop. Our data reveal that olivocerebellar TrkB activity parallels CF-PC synaptic formation and stabilization and is required for neosynaptogenesis. Furthermore, TrkB.T expression rises to reduce TrkB signaling and permit synapse elimination. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009 [source]


    Copolymer effects on microglia and T,cells in the central nervous system of humanized mice

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 12 2005
    Zsolt Illes
    The random amino acid copolymers FYAK and VWAK ameliorate EAE in a humanized mouse model expressing both a human transgenic myelin basic protein (MBP)85,99-specific T,cell receptor and HLA-DR2. Here we show that microglia isolated from the central nervous system (CNS) of humanized mice with EAE induced by MBP85,99 and treated with these copolymers had reduced expression of HLA-DR, and thus reduced capacity to present MBP85,99 and activate transgenic T,cells. In vitro microglia up-regulated empty HLA-DR2 upon activation with GM-CSF with or without LPS or IFN-,, but not with IL-4 or IL-10. Correspondingly, gene chip arrays showed that the CNS of untreated and YFAK-treated mice differentially expressed pro- and anti-inflammatory molecules during MBP85,99-induced EAE. Interestingly, microglia expressed the full-length ,,,and ,,,subunits of the tetrameric adaptor protein complexes AP-1 and AP-2 respectively, but after treatment with GM-CSF these complexes were cleaved, as had been found in immature dendritic cells derived from bone marrow. Strikingly, in vivo the perivascular lymphocyte infiltration seen in untreated mice immunized with MBP85,99 was composed of equal numbers of hV,2+ MPB85,99-specific transgenic and hV,2, endogenous T,cells, while the much smaller infiltration seen after treatment with YFAK was composed predominantly of hV,2, endogenous T,cells. [source]


    Co-expression of C-terminal truncated alpha-synuclein enhances full-length alpha-synuclein-induced pathology

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2010
    Ayse Ulusoy
    Abstract Lewy bodies, which are a pathological hallmark of Parkinson's disease, contain insoluble polymers of alpha-synuclein (,syn). Among the different modifications that can promote the formation of toxic ,syn species, C-terminal truncation is among the most abundant alterations in patients with Parkinson's disease. In vitro, C-terminal truncated ,syn aggregates faster and sub-stoichiometric amounts of C-terminal truncated ,syn promote aggregation of the full-length ,syn (,synFL) and induce neuronal toxicity. To address in vivo the putative stimulation of ,syn-induced pathology by the presence of truncated ,syn, we used recombinant adeno-associated virus to express either ,synFL or a C-terminal truncated ,syn (1-110) in rats. We adjusted the recombinant adeno-associated virus vector concentrations so that either protein alone led to only mild to moderate axonal pathology in the terminals of nigrostriatal dopamine neurons without frank cell loss. When these two forms of ,syn were co-expressed at these pre-determined levels, it resulted in a more aggressive pathology in fiber terminals as well as dopaminergic cell loss in the substantia nigra. Using an antibody that did not detect the C-terminal truncated ,syn (1-110) but only ,synFL, we demonstrated that the co-expressed truncated protein promoted the progressive accumulation of ,synFL and formation of larger pathological accumulations. Moreover, in the co-expression group, three of the eight animals showed apomorphine-induced turning, suggesting prominent post-synaptic alterations due to impairments in the dopamine release, whereas the mild pathology induced by either form alone did not cause motor abnormalities. Taken together these data suggest that C-terminal truncated ,syn can interact with and exacerbate the formation of pathological accumulations containing ,synFL in vivo. [source]


    Biochemical characteristics of C-terminal region of recombinant chitinase from Bacillus licheniformis, implication of necessity for enzyme properties

    FEBS JOURNAL, Issue 9 2008
    Hsu-Han Chuang
    The functional and structural significance of the C-terminal region of Bacillus licheniformis chitinase was explored using C-terminal truncation mutagenesis. Comparative studies between full-length and truncated mutant molecules included initial rate kinetics, fluorescence and CD spectrometric properties, substrate binding and hydrolysis abilities, thermostability, and thermodenaturation kinetics. Kinetic analyses revealed that the overall catalytic efficiency, kcat/Km, was slightly increased for the truncated enzymes toward the soluble 4-methylumbelliferyl- N-N,-diacetyl chitobiose or 4-methylumbelliferyl- N - N,- N,-triacetyl chitotriose or insoluble ,-chitin substrate. By contrast, changes to substrate affinity, Km, and turnover rate, kcat, varied considerably for both types of chitin substrates between the full-length and truncated enzymes. Both truncated enzymes exhibited significantly higher thermostabilities than the full-length enzyme. The truncated mutants retained similar substrate-binding specificities and abilities against the insoluble substrate but only had approximately 75% of the hydrolyzing efficiency of the full-length chitinase molecule. Fluorescence spectroscopy indicated that both C-terminal deletion mutants retained an active folding conformation similar to the full-length enzyme. However, a CD melting unfolding study was able to distinguish between the full-length and truncated mutant molecules by the two phases of apparent transition temperatures in the mutants. These results indicate that up to 145 amino acid residues, including the putative C-terminal chitin-binding region and the fibronectin (III) motif of B. licheniformis chitinase, could be removed without causing a seriously aberrant change in structure and a dramatic decrease in insoluble chitin hydrolysis. The results of the present study provide evidence demonstrating that the binding and hydrolyzing of insoluble chitin substrate for B. licheniformis chitinase was not dependent solely on the putative C-terminal chitin-binding region and the fibronectin (III) motif. [source]


    SMAP-29 has two LPS-binding sites and a central hinge

    FEBS JOURNAL, Issue 4 2002
    Brian F. Tack
    The CD spectra of SMAP-29, an antimicrobial peptide from sheep, showed disordered structure in aqueous buffers, and significant helicity in membrane-like environments, including SDS micelles, lipopolysaccharide (LPS) dispersions, and trifluoroethanol buffer systems. A structure determined by NMR in 40% perdeuterated trifluoroethanol indicated that residues 8,17 were helical, residues 18,19 formed a hinge, and residues 20,28 formed an ordered, hydrophobic segment. SMAP-29 was flexible in 40% trifluoroethanol, forming two sets of conformers that differed in the relative orientation of the N-terminal domain. We used a chromogenic Limulus assay to determine the EC50 of the peptide (the concentration that bound 50% of the added LPS). Studies with full-length and truncated SMAP-29 molecules revealed that each end of the holopeptide contained an LPS-binding domain. The higher affinity LPS-binding domain was situated in the flexible N-terminal portion. LPS binding to full-length SMAP-29 showed positive cooperativity, so the EC50 of the peptide (2.6 µm) was considerably lower than that of the individual LPS-binding domains. LPS-binding studies with a mixture of truncated peptides revealed that this cooperativity was primarily intramolecular (i.e. involving the N- and C-terminal LPS-binding sites of the same peptide molecule). CAP-18[106,142], an antimicrobial cathelicidin peptide of rabbits, resembled SMAP-29 in that it contained N- and C-terminal LPS-binding domains, had an EC50 of 2.5 µm, and bound LPS with positive cooperativity. We conclude that the presence of multiple binding sites that function cooperatively allow peptides such as SMAP-29 and CAP-18 to bind LPS with high affinity. [source]


    Coupling of endothelin receptors to the ERK/MAP kinase pathway,

    FEBS JOURNAL, Issue 20 2001
    Roles of palmitoylation
    Endothelins are potent mitogens that stimulate extracellular signal-regulated kinases (ERK/MAP kinases) through their cognate G-protein-coupled receptors, ETA and ETB. To address the role of post-translational ET receptor modifications such as acylation on ERK activation and to identify relevant downstream effectors coupling the ET receptor to the ERK signaling cascades we have constructed a panel of palmitoylation-deficient ET receptor mutants with differential G, protein binding capacity. Endothelin-1 stimulation of wild-type ETA or ETB induced a fivefold to sixfold increase in ERK in COS-7 and CHO cells whereas full-length nonpalmitoylated ETA and ETB mutants failed to stimulate ERK. A truncated ETB lacking the C-terminal tail domain including putative phosphorylation and arrestin binding site(s) but retaining the critical palmitoylation site(s) was still able to fully stimulate ERK activation. Using mutated ET receptors with selective G-protein-coupling we found that endothelin-induced stimulation of G,q, but not of G,i or G,s, is essential for endothelin-mediated ERK activation. Inhibition of protein kinases A and C or epidermal growth factor receptor kinase failed to prevent ETA - and ETB -mediated ERK activation whereas blockage of phospholipase C-, completely abrogated endothelin-promoted ERK activation through ETA and ETB in recombinant COS-7 and native C6 cells. Complex formation of Ca2+ or inhibition of Src family tyrosine kinases prevented ET-1-induced ERK-2 activation in C6-cells. Our results indicate that endothelin-promoted ERK/MAPK activation criticially depends on palmitoylation but not on phosphorylation of ET receptors, and that the G,q/phospholipase C-,/Ca2+/Src signaling cascade is necessary for efficient coupling of ET receptors to the ERK/MAPK pathway. [source]


    Differential actions of p60c-Src and Lck kinases on the Ras regulators p120-GAP and GDP/GTP exchange factor CDC25Mm

    FEBS JOURNAL, Issue 11 2001
    Carmela Giglione
    It is known that the human Ras GTPase activating protein (GAP) p120-GAP can be phosphorylated by different members of the Src kinase family and recently phosphorylation of the GDP/GTP exchange factor (GEF) CDC25Mm/GRF1 by proteins of the Src kinase family has been revealed in vivo[Kiyono, M., Kaziro, Y. & Satoh, T. (2000) J. Biol. Chem.275, 5441,5446]. As it still remains unclear how these phosphorylations can influence the Ras pathway we have analyzed the ability of p60c-Src and Lck to phosphorylate these two Ras regulators and have compared the activity of the phosphorylated and unphosphorylated forms. Both kinases were found to phosphorylate full-length or truncated forms of GAP and GEF. The use of the catalytic domain of p60c-Src showed that its SH3/SH2 domains are not required for the interaction and the phosphorylation of both regulators. Remarkably, the phosphorylations by the two kinases were accompanied by different functional effects. The phosphorylation of p120-GAP by p60c-Src inhibited its ability to stimulate the Ha-Ras-GTPase activity, whereas phosphorylation by Lck did not display any effect. A different picture became evident with CDC25Mm; phosphorylation by Lck increased its capacity to stimulate the GDP/GTP exchange on Ha-Ras, whereas its phosphorylation by p60c-Src was ineffective. Our results suggest that phosphorylation by p60c-Src and Lck is a selective process that can modulate the activity of p120-GAP and CDC25Mm towards Ras proteins. [source]


    Impaired expression and function of toll-like receptor 7 in hepatitis C virus infection in human hepatoma cells,

    HEPATOLOGY, Issue 1 2010
    Serena Chang
    Hepatitis C virus (HCV) interferes with interferon (IFN)-mediated innate immune defenses. Toll-like receptor (TLR) 7 agonists robustly inhibit HCV infection. We hypothesize that HCV infection may interfere with the expression and/or function of TLR7, a sensor of single-stranded RNA. We identified reduced TLR7 RNA and protein levels in hepatoma cells expressing HCV (full-length, BB7-subgenomic, and JFH-1 clone) compared with control HCV-naïve cells. The biological relevance of this finding was confirmed by the observation of decreased TLR7 RNA in livers of HCV-infected patients compared with controls. HCV clearance, by IFN-, treatment or restrictive culture conditions, restored the decreased TLR7 expression. Treatment with RNA polymerase inhibitors revealed a shorter TLR7 half-life in HCV-replicating cells compared with controls. Downstream of TLR7, an increased baseline IRF7 nuclear translocation was observed in HCV-positive cells compared with controls. Stimulation with the TLR7 ligand R837 resulted in significant IRF7 nuclear translocation in control cells. In contrast, HCV-replicating cells showed attenuated TLR7 ligand-induced IRF7 activation. Conclusion: Reduced TLR7 expression, due to RNA instability, directly correlates with HCV replication and alters TLR7-induced IRF7-mediated cell activation. These results suggest a role for TLR7 in HCV-mediated evasion of host immune surveillance. (HEPATOLOGY 2009.) [source]


    Plectin deficiency leads to both muscular dystrophy and pyloric atresia in epidermolysis bullosa simplex,

    HUMAN MUTATION, Issue 10 2010
    Ken Natsuga
    Abstract Plectin is a cytoskeletal linker protein which has a long central rod and N- and C-terminal globular domains. Mutations in the gene encoding plectin (PLEC) cause two distinct autosomal recessive subtypes of epidermolysis bullosa: EB simplex (EBS) with muscular dystrophy (EBS-MD), and EBS with pyloric atresia (EBS-PA). Previous studies have demonstrated that loss of full-length plectin with residual expression of the rodless isoform leads to EBS-MD, whereas complete loss or marked attenuation of expression of full-length and rodless plectin underlies the more severe EBS-PA phenotype. However, muscular dystrophy has never been identified in EBS-PA, not even in the severe form of the disease. Here, we report the first case of EBS associated with both pyloric atresia and muscular dystrophy. Both of the premature termination codon-causing mutations of the proband are located within exon 32, the last exon of PLEC. Immunofluorescence and immunoblot analysis of skin samples and cultured fibroblasts from the proband revealed truncated plectin protein expression in low amounts. This study demonstrates that plectin deficiency can indeed lead to both muscular dystrophy and pyloric atresia in an individual EBS patient. © 2010 Wiley-Liss, Inc. [source]


    Purification and characterization of ,-glucosidase in Apis cerana indica

    INSECT SCIENCE, Issue 3 2008
    Chanpen Chanchao
    Abstract Apis cerana indica foragers were used for the isolation of a full-length ,-glucosidase cDNA, and for purification of the active nascent protein by low salt extraction of bee homogenates, ammonium sulphate precipitation and diethylaminoethyl-cellulose and Superdex 200 chromatographies. The molecular mass of the purified protein was estimated by polyacrylamide gel electrophoresis resolution, and the pH, temperature, incubation, and substrate optima for enzymic activity were determined. Conformation of the purified enzyme as ,-glucosidase was performed by BLAST software homology comparisons between matrix assisted laser desorption ionization time of flight mass spectroscopy analysed partial tryptic peptide digests of the purified protein with the predicted amino acid sequences deduced from the ,-glucosidase cDNA sequence. [source]


    Involvement of protein kinase C-, in DNA damage-induced apoptosis

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 4 2003
    Alakananda Basu
    Abstract Apoptosis is a highly orchestrated cell suicidal program required to maintain a balance between cell proliferation and cell death. A defect in apoptotic machinery can cause cancer. Many anticancer drugs are known to kill tumor cells by inducing apoptosis, and a defect in apoptosis can lead to anticancer drug resistance. Apoptosis is regulated by a complex cellular signaling network. Several members of the protein kinase C (PKC) family serve as substrates for caspases and PKC, isozyme has been intimately associated with DNA damage-induced apoptosis. It can act both upstream and downstream of caspases. In response to apoptotic stimuli, the full-length and the catalytic fragment of PKC, may translocate to distinct cellular compartments, including mitochondria and the nucleus, to reach their targets. Both activation and intracellular distribution of PKC, may have significant impact on apoptosis. This review intends to assimilate recent views regarding the involvement of PKC, in DNA damage-induced apoptosis. [source]


    Activation of ERK signaling upon alternative protease nexin-1 internalization mediated by syndecan-1

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2006
    Xiaobiao Li
    Abstract Protease nexin-1 (PN-1), an inhibitor of serine proteases, contributes to tissue homeostasis and influences the behavior of some tumor cells. The internalization of PN-1 protease complexes is considered to be mediated by the low-density lipoprotein receptor related protein 1 (LRP1). In this study, both wild-type and LRP1,/, mouse embryonic fibroblasts (MEF) were shown to internalize PN-1. Receptor associated protein (RAP) interfered with PN-1 uptake only in wild-type MEF cells, indicating that another receptor mediates PN-1 uptake in the absence of LRP1. In LRP1,/, MEF cells, inhibitor sensitivity and kinetic values (t1/2 at 45 min) of PN-1 uptake showed a similarity to syndecan-1-mediated endocytosis. In these cells, PN-1 uptake was increased by overexpression of full-length syndecan-1 and decreased by RNA interference targeting this proteoglycan. Most important, in contrast to PKA activation known to be triggered by LRP1-mediated internalization, our study shows that syndecan-1-mediated internalization of PN-1 stimulated the Ras-ERK signaling pathway. J. Cell. Biochem. 99: 936,951, 2006. © 2006 Wiley-Liss, Inc. [source]


    Hydrolysis of the amyloid ,-peptide (A,) 1,40 between Asp23,Val24 produces non-aggregating fragments.

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 2 2005
    An electrospray mass spectrometric study
    Abstract The aggregation of full-length (residues 1,40) amyloid ,-peptide (A,) and fragments corresponding to residues 1,23 and 24,40 was studied by electrospray mass spectrometry, using gramicidin as a non-aggregating reference. Following a lag period, A,(1,40) at 140 µM concentration aggregates with apparent first-order kinetics. Under acidic conditions A,(1,40) undergoes spontaneous cleavage between Asp23,Val24 and to a lesser extent also at two other Asp,X motifs. Incubation in acidic H218O showed incorporation of 18O in fragment A,(1,23), confirming that the Asp23,Val24 peptide bond had been hydrolyzed. Incubation of synthetic A,(1,23) and A,(24,40) peptides with A,(1,40) showed that A,(24,40) remained in solution for several months, that A,(1,23) partly disappeared from solution, whereas A,(1,40) completely disappeared. Further, treatment of sedimentable aggregates formed after co-incubation of the three peptides with hexafluoro-2-propanol or formic acid recovered the intensity of A,(1,40). These data support previous studies showing that the region of A, encompassing residues 16,24 is necessary for aggregation into amyloid fibrils. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    The cell migration protein Grb7 associates with transcriptional regulator FHL2 in a Grb7 phosphorylation-dependent manner

    JOURNAL OF MOLECULAR RECOGNITION, Issue 1 2009
    Sharareh Siamakpour-Reihani
    Abstract Grb7 is an adaptor molecule that can mediate signal transduction from multiple cell surface receptors to various downstream signaling pathways. Grb7, along with Grb10 and Grb14, make up the Grb7 protein family. This protein family has been shown to be overexpressed in certain cancers and cancer cell lines. Grb7 and a receptor tyrosine kinase (RTK), erbB2, are overexpressed in 20,30% of breast cancers. Grb7 overexpression has been linked to enhanced cell migration and metastasis, though the participants in these pathways have not been determined. In this study, we report that Grb7 interacts with four and half lim domains isoform 2 (FHL2), a transcription regulator with an important role in oncogenesis, including breast cancer. Additionally, in yeast 2-hybrid (Y2H) assays, we show that the interaction is specific to the Grb7 RA and PH domains. We have also demonstrated that full-length (FL) Grb7 and FHL2 interact in mammalian cells and that Grb7 must be tyrosine phosphorylated for this interaction to occur. Immunofluorescent microscopy demonstrates possible co-localization of Grb7 and FHL2. A model with supporting NMR evidence of Grb7 autoinhibition is proposed. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    RNA editing and alternative splicing of human serotonin 2C receptor in schizophrenia

    JOURNAL OF NEUROCHEMISTRY, Issue 6 2003
    Stella Dracheva
    Abstract Serotonin 2C receptor (5-HT2CR) heterogeneity in the brain occurs mostly from two different sources: (i) 5-HT2CR mRNA undergoes adenosine-to-inosine editing events at five positions, which leads to amino acid substitutions that produce receptor variants with different pharmacological properties; (ii) 5-HT2CR mRNA is alternatively spliced, resulting in a truncated mRNA isoform (5-HT2CR-tr) which encodes a non-functional serotonin receptor. 5-HT2CR mRNA editing efficiencies and the expression of the full-length and the truncated 5-HT2CR mRNA splice isoforms were analyzed in the prefrontal cortex of elderly subjects with schizophrenia vs. matched controls (ns = 15). No significant differences were found, indicating that there are no alterations in editing or alternative splicing of 5-HT2CRs that are associated with schizophrenia in persons treated with antipsychotic medications. Quantitation of 5-HT2CR and 5-HT2CR-tr mRNA variants revealed that the expression of 5-HT2CR-tr was ,,50% of that observed for the full-length isoform. [source]


    Carboxy terminus of secreted phosphoprotein-24 kDa (spp24) is essential for full inhibition of BMP-2 activity

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 9 2010
    Elsa J. Brochmann
    Abstract Secreted phosphoprotein-24,kDa (spp24) is a bone morphogenetic protein (BMP)-binding protein isolated from bone. It exists in a number of size forms and is hypothesized to function as a BMP latency protein and/or a "slow release" mechanism for BMPs involved in bone turnover and repair. We have examined the hypothesis that proteolytic modification of the C-terminus of spp24 affects its BMP-2,binding properties and bioactivity in the BMP-2,stimulated ectopic bone forming bioassay. Three different size forms of recombinant spp24 that correspond to predicted 18.1,kDa, 16.0,kDa, and 14.5,kDa proteolytic products were compared to full-length (fl) spp24. One of these forms (spp18.1) we hypothesize to be the protein which Urist initially, but apparently inaccurately, called "BMP." Only full-length spp24 completely inhibited BMP-2,induced bone formation. The 18.1,kDa truncated isoform of spp24 which we hypothesize to be Urist's protein did not. The inhibitory capacity of the proteins was correlated with their kinetic constants, assessed by surface plasmon resonance. At the highest, inhibitory, dose of spp24 and its derivatives, kd ("stability") best predicted the extent of ectopic bone formation whereas at the lowest dose, which was not inhibitory, ka ("recognition") best predicted the extent of ectopic bone formation. We conclude that proteolytic processing of spp24 affects the interaction of this protein with BMP-2 and this affects the function of the protein. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1200,1207, 2010 [source]


    Full-length bovine spp24 [spp24 (24-203)] inhibits BMP-2 induced bone formation,

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2008
    Chananit Sintuu
    Abstract Secreted phosphoprotein 24 kDa (spp24) is a bone matrix protein. It contains a TGF-, receptor II homology 1 (TRH1) domain. A cyclic, synthetic 19 amino acid peptide (bone morphogenetic protein binding peptide or BBP) based on the sequence of the TRH1 domain enhances BMP-2 induced osteogenesis. Many observations suggest that different size forms of this protein have very different effects (inhibiting or enhancing) on BMP-2 induced osteogenesis. Using the stable recombinant Met(His)6 -tagged secretory form of full-length (fl) bovine spp24 [Met(His)6 -spp24 (residues 24,203)] and transgenic (TG) mice expressing fl bovine spp24 (residues 1,203), we have demonstrated that spp24 inhibits BMP-2 induced bone formation. The effects of Met(His)6 -spp24 (24,203) were determined in the ectopic bone-forming bioassay in male mice. Implantation of 5 µg of BMP-2 stimulated bone formation, assessed densitometrically as bone area and mineral content. When Met(His)6 -spp24 (24,203) was implanted with BMP-2, it elicited a dose-dependent decrease in BMP-2-medicated ectopic bone formation. When added at a 50-fold excess (w/w), Met(His)6 -spp24 (24,203) completely ablated the effects of BMP-2, while addition of a 10-fold excess had no effect. Constitutive expression of fl bovine spp24 (1,203) under the control of the osteocalcin promoter in TG female mice reduced femoral and vertebral bone mineral density at 3 months of age and reduced femoral BMD at 8 months of age, but had no effects in male mice, which can exhibit less osteocalcin-promoter driven gene transcription than females. Histomorphometric analysis demonstrated that bone volume and trabecular thickness were lower in TG female mice at 3 months of age than in sex- and age-matched wild type (WT) controls. Thus, fl spp24 and its secretory isoform (Met(His)6 -spp24 [24,203]), which contain a BMP-binding or TRH1 motif, inhibit ectopic bone formation in male mice and adversely affects BMD and histological parameters related to bone mass and formation in female mice expressing the human transgene. Under these conditions, fl spp24 acts as a BMP antagonist in vivo. © 2008 Orthopaedic Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:753,758, 2008 [source]


    Structural characterization of a neurotoxic threonine-rich peptide corresponding to the human prion protein ,2-helical 180,195 segment, and comparison with full-length ,2-helix-derived peptides,

    JOURNAL OF PEPTIDE SCIENCE, Issue 10 2008
    Luisa Ronga
    Abstract The 173,195 segment corresponding to the helix 2 of the globular PrP domain is a good candidate to be one of the several ,spots' of intrinsic structural flexibility, which might induce local destabilization and concur to protein transformation, leading to aggregation-prone conformations. Here, we report CD and NMR studies on the ,2-helix-derived peptide of maximal length (hPrP[180,195]) that is able to exhibit a regular structure different from the prevalently random arrangement of other ,2-helix-derived peptides. This peptide, which has previously been shown to be affected by buffer composition via the ion charge density dependence typical of Hofmeister effects, corresponds to the C -terminal sequence of the PrPC full-length ,2-helix and includes the highly conserved threonine-rich 188,195 segment. At neutral pH, its conformation is dominated by ,-type contributions, which only very strong environmental modifications are able to modify. On TFE addition, an increase of ,-helical content can be observed, but a fully helical conformation is only obtained in neat TFE. However, linking of the 173,179 segment, as occurring in wild-type and mutant peptides corresponding to the full-length ,2-helix, perturbs these intrinsic structural propensities in a manner that depends on whether the environment is water or TFE. Overall, these results confirm that the 180,195 parental region in hPrPC makes a strong contribution to the chameleon conformational behavior of the segment corresponding to the full-length ,2-helix, and could play a role in determining structural rearrangements of the entire globular domain. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd. [source]


    Preparation, physiochemical characterization, and oral immunogenicity of A,(1,12), A,(29,40), and A,(1,42) loaded PLG microparticles formulations

    JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 6 2009
    R. Rajkannan
    Abstract Alzheimer's disease (AD) is caused by the deposition of ,-amyloid (A,) protein in brain. The current AD immunotherapy aims to prevent A, plaque deposition and enhance its degradation in the brain. In this work, the peptides B-cell epitope A,(1,12), T-cell epitope A,(29,40) and full-length A,(1,42) were loaded separately to the poly (D,L -lactide co-glycolide) (PLG) microparticles by using W/O/W double emulsion solvent evaporation method with entrapment efficacy of 70.46%, 60.93%, and 65.98%, respectively. The prepared A, PLG microparticles were smooth, spherical, individual, and nonporous in nature with diameters ranging from 2 to 12 µm. The cumulative in vitro release profiles of A,(1,12), A,(29,40), and A,(1,42) from PLG microparticles sustained for long periods and progressively reached to 73.89%, 69.29%, and 70.08% by week 15. In vitro degradation studies showed that the PLG microparticles maintained the surface integrity up to week 8 and eroded completely by week 16. Oral immunization of A, peptides loaded microparticles in mice elicited stronger immune response by inducing anti-A, antibodies for prolonged time (24 weeks). The physicochemical characterization and immunogenic potency of A, peptides incorporated PLG microparticles suggest that the microparticles formulation of A, can be a potential oral AD vaccine. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:2027,2039, 2009 [source]


    Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy

    MEDICINAL RESEARCH REVIEWS, Issue 3 2008
    Rongshi Li
    Abstract Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) involved in the genesis of several human cancers; indeed, ALK was initially identified in constitutively activated and oncogenic fusion forms,the most common being nucleophosmin (NPM)-ALK,in a non-Hodgkin's lymphoma (NHL) known as anaplastic large-cell lymphoma (ALCL) and subsequent studies identified ALK fusions in the human sarcomas called inflammatory myofibroblastic tumors (IMTs). In addition, two recent reports have suggested that the ALK fusion, TPM4-ALK, may be involved in the genesis of a subset of esophageal squamous cell carcinomas. While the cause-effect relationship between ALK fusions and malignancies such as ALCL and IMT is very well established, more circumstantial links implicate the involvement of the full-length, normal ALK receptor in the genesis of additional malignancies including glioblastoma, neuroblastoma, breast cancer, and others; in these instances, ALK is believed to foster tumorigenesis following activation by autocrine and/or paracrine growth loops involving the reported ALK ligands, pleiotrophin (PTN) and midkine (MK). There are no currently available ALK small-molecule inhibitors approved for clinical cancer therapy; however, recognition of the variety of malignancies in which ALK may play a causative role has recently begun to prompt developmental efforts in this area. This review provides a succinct summary of normal ALK biology, the confirmed and putative roles of ALK fusions and the full-length ALK receptor in the development of human cancers, and efforts to target ALK using small-molecule kinase inhibitors. © 2007 Wiley Periodicals, Inc. Med Res Rev, 28, No. 3, 372,412, 2008 [source]


    A novel member of the glycosyltransferase family, ,3Gn-T2, highly downregulated in invasive human bladder transitional cell carcinomas

    MOLECULAR CARCINOGENESIS, Issue 2 2001
    Irina Gromova
    Abstract Differential display reverse transcription (DDRT),polymerase chain reaction (PCR) was used to compare the transcriptomes of invasive and noninvasive fresh human bladder transitional cell carcinomas. A differentially expressed novel gene sharing structural similarity with the human ,3-galactosyltransferase family, ,-1,3- N -acetylglucosaminyltransferase-T2 (,3Gn-T2), was identified. The full-length ,3Gn-T2 cDNA, containing a complete open reading frame of 1193 bp, was cloned and sequenced. ,3Gn-T2 exhibited 29,41% homology to the multigene ,3-galactosyltransferase family. Expression of the full-length ,3Gn-T2 cDNA in an in vitro coupled transcription/translation assay yielded a primary translation product with an apparent Mr of 46 kDa, which is in agreement with the predicted 397-amino-acid protein encoded by ,3Gn-T2. Multiple peptide alignment showed several sequence motifs corresponding to putative catalytic domains that are conserved throughout all members of the ,3-galactosyltransferase family, namely, a type II transmembrane domain, a conserved DxD motif, an N -glycosylation site, and five conserved cysteins. By RT-PCR strong downregulation of ,3Gn-T2 expression was noted in invasive human bladder transitional cell carcinomas (16 fresh biopsy samples: grade III, T2,T4) compared with their noninvasive counterparts (15 fresh biopsies: grade II, Ta), suggesting that ,3Gn-T2 may be involved in cancer progression. © 2001 Wiley-Liss, Inc. [source]


    Tyrosine protein kinases and spermatogenesis: truncation matters

    MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2006
    Abraham L. Kierszenbaum
    Abstract Protein phosphorylation on serine/threonine or tyrosine residues represents a significant regulatory mechanism in signal transduction during spermatogenesis, oogenesis, and fertilization. There are several families of tyrosine protein kinases operating during spermatogenesis: the Src family of tyrosine protein kinases; the Fujinami poultry sarcoma/feline sarcoma (Fps/Fes) and Fes-related protein (Fer) subfamily of non-receptor proteins; and c-kit, the transmembrane tyrosine kinase receptor that belongs to the family of the PDGF receptor. A remarkable characteristic is the coexistence of full-length and truncated tyrosine kinases in testis. Most of the truncated forms are present during spermiogenesis. Examples include the truncated forms of Src tyrosine kinase hematopoietic cell kinase (Hck), FerT, and tr-kit. A feature of FerT and tr-kit is the kinase domain that ensures the functional properties of the truncated protein. FerT, a regulator of actin assembly/disassembly mediated by cortactin phosphorylation, is present in the acroplaxome, a cytoskeletal plate containing an F-actin network and linking the acrosome to the spermatid nuclear envelope. This finding suggests that Fer kinase represents one of the tyrosine protein kinases that may contribute to spermatid head shaping. The c-kit ligand, stem cell factor (SCF), which induces c-kit dimerization and autophosphorylation, exists as both membrane-associated and soluble. Although tyrosine protein kinases are prominent in spermatogenesis, a remarkable observation is the paucity of phenotypic alterations in spermatogenic cells in male mice targeted with Fer kinase-inactivating mutation. It is possible that the redundant functions of the tyrosine protein kinase pool present during spermatogenesis may explain the limited phenotypes of single mutant mice. The production of compound and viable mutant mice, lacking the expression of two or more tyrosine kinases, may shed light on this intriguing issue. Mol. Reprod. Dev. © 2006 Wiley-Liss, Inc. [source]


    Genomic repertoire of human mesangial cells: comprehensive analysis of gene expression by cDNA array hybridization

    NEPHROLOGY, Issue 4 2000
    Naohiro Yano
    SUMMARY: Knowing when and where a gene is expressed in a cell often provides a strong clue as to its physiological role. It is estimated the human genome contains 80 000,100 000 genes. Assessment of gene activity on a global genome-wide scale is a fundamental and newly developed experimental strategy to expand the scope of biological investigation from a single gene to studying all genes at once in a systematic way. Capitalizing on the recently developed methodology of cDNA array hybridization, we monitored the simultaneous expression of thousands of genes in primary human mesangial cells. Complex ,- 33P-labelled cDNA probes were prepared from cultured mesangial cells. The probe was hybridized to a high-density array of 18 326 paired target genes. The radioactive hybridization signals were analysed by phosphorimager. Bioinformatics from public genomic databases was utilized to assign a chromosomal location of each expressed transcript. Approximately 7460 different gene transcripts were detected in mesangial cells. Close to 13% (957 genes) were full-length mRNA human transcripts (HTs), the remainder 6503 being expressed sequence tags (ESTs). Using special imaging computer software, the transcriptional level of the 957 HTs was compared with the expression of the ribosomal protein S28 (housekeeping gene). The HTs were also classified by function of the gene product and listed with information on their chromosomal loci. To allow comparison between clinical and experimental studies of gene expression, the detected human gene transcripts were cross-referenced to orthologous mouse genes. Thus, the presented data constitute a quantitative preliminary blueprint of the transcriptional map of the human mesangial cell. The information may serve as a resource for speeding up the discovery of genes underlying human glomerular diseases. The complete listing of the full-length expressed genes is available upon request via E-mail: (Abdalla_Rifai@Brown.edu). [source]


    Functional analysis of cauliflower mosaic virus 35S promoter: re-evaluation of the role of subdomains B5, B4 and B2 in promoter activity

    PLANT BIOTECHNOLOGY JOURNAL, Issue 6 2007
    Simran Bhullar
    Summary The cauliflower mosaic virus 35S (35S) promoter is used extensively for transgene expression in plants. The promoter has been delineated into different subdomains based on deletion analysis and gain-of-function studies. However, cis -elements important for promoter activity have been identified only in the domains B1 (as-2 element), A1 (as-1 element) and minimal promoter (TATA box). No cis -elements have been described in subdomains B2,B5, although these are reported to be important for the overall activity of the 35S promoter. We have re-evaluated the contribution of three of these subdomains, namely B5, B4 and B2, to 35S promoter activity by developing several modified promoters. The analysis of ,-glucuronidase gene expression driven by the modified promoters in different tissues of primary transgenic tobacco lines, as well as in seedlings of the T1 generation, revealed new facets about the functional organization of the 35S promoter. This study suggests that: (i) the 35S promoter truncated up to ,301 functions in a similar manner to the ,343 (full-length) 35S promoter; (ii) the Dof core and I-box core observed in the subdomain B4 are important for 35S promoter activity; and (iii) the subdomain B2 is essential for maintaining an appropriate distance between the proximal and distal regions of the 35S promoter. These observations will aid in the development of functional synthetic 35S promoters with decreased sequence homology. Such promoters can be used to drive multiple transgenes without evoking promoter homology-based gene silencing when attempting gene stacking. [source]


    Structure of the 21,30 fragment of amyloid ,-protein

    PROTEIN SCIENCE, Issue 6 2006
    Andrij Baumketner
    Abstract Folding and self-assembly of the 42-residue amyloid ,-protein (A,) are linked to Alzheimer's disease (AD). The 21,30 region of A,, A,(21,30), is resistant to proteolysis and is believed to nucleate the folding of full-length A,. The conformational space accessible to the A,(21,30) peptide is investigated by using replica exchange molecular dynamics simulations in explicit solvent. Conformations belonging to the global free energy minimum (the "native" state) from simulation are in good agreement with reported NMR structures. These conformations possess a bend motif spanning the central residues V24,K28. This bend is stabilized by a network of hydrogen bonds involving the side chain of residue D23 and the amide hydrogens of adjacent residues G25, S26, N27, and K28, as well as by a salt bridge formed between side chains of K28 and E22. The non-native states of this peptide are compact and retain a native-like bend topology. The persistence of structure in the denatured state may account for the resistance of this peptide to protease degradation and aggregation, even at elevated temperatures. [source]


    Octapeptide repeat insertions increase the rate of protease-resistant prion protein formation

    PROTEIN SCIENCE, Issue 3 2006
    Roger A. Moore
    PrP, prion protein; HaPrP, hamster prion protein; TSE, transmissible spongiform encephalopathies Abstract A central feature of transmissible spongiform encephalopathies (TSE or prion diseases) involves the conversion of a normal, protease-sensitive glycoprotein termed prion protein (PrP-sen) into a pro-tease-resistant form, termed PrP-res. The N terminus of PrP-sen has five copies of a repeating eight amino acid sequence (octapeptide repeat). The presence of one to nine extra copies of this motif is associated with a heritable form of Creutzfeld-Jakob disease (CJD) in humans. An increasing number of octapeptide repeats correlates with earlier CJD onset, suggesting that the rate at which PrP-sen misfolds into PrP-res may be influenced by these mutations. In order to determine if octapeptide repeat insertions influence the rate at which PrP-res is formed, we used a hamster PrP amyloid-forming peptide (residues 23,144) into which two to 10 extra octapeptide repeats were inserted. The spontaneous formation of protease-resistant PrP amyloid from these peptides was more rapid in response to an increased number of octapeptide repeats. Furthermore, experiments using full-length glycosylated hamster PrP-sen demonstrated that PrP-res formation also occurred more rapidly from PrP-sen molecules expressing 10 extra copies of the octapeptide repeat. The rate increase for PrP-res formation did not appear to be due to any influence of the octapeptide repeat region on PrP structure, but rather to more rapid binding between PrP molecules. Our data from both models support the hypothesis that extra octapeptide repeats in PrP increase the rate at which protease resistant PrP is formed which in turn may affect the rate of disease onset in familial forms of CJD. [source]


    Expression, purification, and activities of full-length and truncated versions of the integral membrane protein Vpu from HIV-1

    PROTEIN SCIENCE, Issue 3 2002
    Che Ma
    HIV-1, human immunodeficiency virus type 1; AIDS, acquired immune deficiency syndrome; NMR, nuclear magnetic resonance; CNBr, cyanogen bromide; DHPC, dihexanoyl phosphatidylcholine; TROSY, transverse relaxation-optimized spectroscopy Abstract Vpu is an 81-residue accessory protein of HIV-1. Because it is a membrane protein, it presents substantial technical challenges for the characterization of its structure and function, which are of considerable interest because the protein enhances the release of new virus particles from cells infected with HIV-1 and induces the intracellular degradation of the CD4 receptor protein. The Vpu-mediated enhancement of the virus release rate from HIV-1-infected cells is correlated with the expression of an ion channel activity associated with the transmembrane hydrophobic helical domain. Vpu-induced CD4 degradation and, to a lesser extent, enhancement of particle release are both dependent on the phosphorylation of two highly conserved serine residues in the cytoplasmic domain of Vpu. To define the minimal folding units of Vpu and to identify their activities, we prepared three truncated forms of Vpu and compared their structural and functional properties to those of full-length Vpu (residues 2,81). Vpu2,37 encompasses the N-terminal transmembrane ,-helix; Vpu2,51 spans the N-terminal transmembrane helix and the first cytoplasmic ,-helix; Vpu28,81 includes the entire cytoplasmic domain containing the two C-terminal amphipathic ,-helices without the transmembrane helix. Uniformly isotopically labeled samples of the polypeptides derived from Vpu were prepared by expression of fusion proteins in E. coli and were studied in the model membrane environments of lipid micelles by solution NMR spectroscopy and oriented lipid bilayers by solid-state NMR spectroscopy. The assignment of backbone resonances enabled the secondary structure of the constructs corresponding to the transmembrane and the cytoplasmic domains of Vpu to be defined in micelle samples by solution NMR spectroscopy. Solid-state NMR spectra of the polypeptides in oriented lipid bilayers demonstrated that the topology of the domains is retained in the truncated polypeptides. The biological activities of the constructs of Vpu were evaluated. The ion channel activity is confined to the transmembrane ,-helix. The C-terminal ,-helices modulate or promote the oligomerization of Vpu in the membrane and stabilize the conductive state of the channel, in addition to their involvement in CD4 degradation. [source]