Home About us Contact | |||
Full Factorial Design (full + factorial_design)
Selected AbstractsDNA Depletion by Precipitation in the Purification of Cell Culture-Derived Influenza VaccinesCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 6 2010T. Kröber Abstract A pilot study for the purification of cell culture-derived human influenza virus is presented, which focuses on the early removal of DNA by precipitation. Strains of influenza virus were propagated using Madin Darby canine kidney cells as a host. A harvesting time of about 72 h postinfection was chosen to minimize the level of impurities (host cell DNA and protein). Cell culture supernatant was clarified by centrifugation and the performance of this operation was characterized on the basis of Sigma theory. An average clarification efficiency of 93,% (based on turbidity) and a product yield of 85,% (based on hemagglutination activity) were obtained at a load of 1.6,·,10,8 m s,1. Furthermore, the applicability of Sigma theory for scale-up studies using two different laboratory centrifuges was verified. Selective precipitation of DNA was achieved by the addition of polyethyleneimine (PEI). Full factorial design was applied to optimize selectivity considering pH, ionic strength, and the concentration and molecular weight of PEI. Under optimized conditions, treatment with PEI resulted in a reduction of DNA to 15,% of the initial amount, while 86,% of virions (based on neuraminidase activity) were recovered. The subsequent concentration of virions was realized by tangential-flow ultrafiltration. Recovery based on hemagglutination activity was determined to 63,% on average. Including the previous precipitation step, overall reduction in DNA after tangential-flow ultrafiltration was 500-fold. These results indicate that the suggested unit operations are suited for the early depletion of DNA in cell culture-derived influenza vaccine production. [source] Comparing different fractions of a factorial design: a metal cutting case studyAPPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, Issue 2 2007E. Mřnness Abstract Full factorial designs of a significant size are very rarely performed in industry due to the number of trials involved and unavailable time and resources. The data in this paper were obtained from a six-factor full factorial (26) designed experiment that was conducted to determine the optimum operating conditions for a steel milling operation. Fractional-factorial designs 2 (one-eighth) and 2 (one-fourth, using a fold-over from the one-eighth) are compared with the full 26 design. Four of the 2 are de-aliased by adding four more runs. In addition, two 12-run Plackett,Burman experiments and their combination into a fold-over 24-run experiment are considered. Many of the one-eighth fractional-factorial designs reveal some significant effects, but the size of the estimates varies much due to aliasing. Adding four more runs improves the estimation considerably. The one-quarter fraction designs yield satisfactory results, compared to the full factorial, if the ,correct' parameterization is assumed. The Plackett,Burman experiments, estimating all main effects, always perform worse than the equivalent regular designs (which have fewer runs). When considering a reduced model many of the different designs are more or less identical. The paper provides empirical evidence for managers and engineers that the choice of an experimental design is very important and highlights how designs of a minimal size may not always result in productive findings. Copyright © 2006 John Wiley & Sons, Ltd. [source] High-throughput screening techniques for rapid PEG-based precipitation of IgG4 mAb from clarified cell culture supernatantBIOTECHNOLOGY PROGRESS, Issue 3 2010Carol Knevelman Abstract Locating optimal protein precipitation conditions for complex biological feed materials is problematic. This article describes the application of a series of high-throughput platforms for the rapid identification and selection of conditions for the precipitation of an IgG4 monoclonal antibody (mAb) from a complex feedstock using only microliter quantities of material. The approach uses 96-microwell filter plates combined with high-throughput analytical methods and a method for well volume determination for product quantification. The low material, time and resource requirements facilitated the use of a full factorial Design of Experiments (DoE) for the rapid investigation into how critical parameters impact the IgG4 precipitation. To aid the DoE, a set of preliminary range-finding studies were conducted first. Data collected through this approach describing Polyethylene Glycol (PEG) precipitation of the IgG4 as a function of mAb concentration, precipitant concentration, and pH are presented. Response surface diagrams were used to explore interactions between parameters and to inform selection of the most favorable conditions for maximum yield and purification. PEG concentrations required for maximum yield and purity were dependant on the IgG4 concentration; however, concentrations of 14 to 20% w/v, pH 6.5, gave optimal levels of yield and purity. Application of the high-throughput approach enabled 1,155 conditions to be examined with less than 1 g of material. The level of insights gained over such a short time frame is indicative of the power of microwell experimentation in allowing the rapid identification of appropriate processing conditions for key bioprocess operations. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] Uncertainty and Sensitivity Analysis of Damage Identification Results Obtained Using Finite Element Model UpdatingCOMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, Issue 5 2009Babak Moaveni The shake table tests were designed so as to damage the building progressively through several historical seismic motions reproduced on the shake table. A sensitivity-based finite element (FE) model updating method was used to identify damage in the building. The estimation uncertainty in the damage identification results was observed to be significant, which motivated the authors to perform, through numerical simulation, an uncertainty analysis on a set of damage identification results. This study investigates systematically the performance of FE model updating for damage identification. The damaged structure is simulated numerically through a change in stiffness in selected regions of a FE model of the shear wall test structure. The uncertainty of the identified damage (location and extent) due to variability of five input factors is quantified through analysis-of-variance (ANOVA) and meta-modeling. These five input factors are: (1,3) level of uncertainty in the (identified) modal parameters of each of the first three longitudinal modes, (4) spatial density of measurements (number of sensors), and (5) mesh size in the FE model used in the FE model updating procedure (a type of modeling error). A full factorial design of experiments is considered for these five input factors. In addition to ANOVA and meta-modeling, this study investigates the one-at-a-time sensitivity analysis of the identified damage to the level of uncertainty in the identified modal parameters of the first three longitudinal modes. The results of this investigation demonstrate that the level of confidence in the damage identification results obtained through FE model updating, is a function of not only the level of uncertainty in the identified modal parameters, but also choices made in the design of experiments (e.g., spatial density of measurements) and modeling errors (e.g., mesh size). Therefore, the experiments can be designed so that the more influential input factors (to the total uncertainty/variability of the damage identification results) are set at optimum levels so as to yield more accurate damage identification results. [source] Wedged between bottom-up and top-down processes: aphids on tansyECOLOGICAL ENTOMOLOGY, Issue 1 2004Bernhard Stadler Abstract., 1. Many species of aphids exploit a single host-plant species and have to cope with changing environmental conditions. They often vary greatly in abundance even when feeding on the same host. In a field experiment, the bottom-up (plant quality/patch type frequency) and top-down (ant attendance/predation) effects on the abundance of four species of aphids feeding on tansy (Tanacetum vulgare) were tested using a full factorial design. In addition, a model was used to examine these patch characteristics for their relative effects on the population dynamics and abundance of different aphid species. 2. Aphid numbers changed significantly depending on the quality of the host plant and the presence/absence of attending ants. The obligate myrmecophile, Metopeurum fuscoviride, was abundant on high-quality plants, while on poor quality plants or on plants without attending ants these aphids did not survive until the end of the experiment. The facultative myrmecophiles, Aphis fabae and Brachycaudus cardui, and the unattended aphid species, Macrosiphoniella tanacetaria, all reached similar peak population densities, but M. tanacetaria did best in poor quality patches. 3. Natural enemies reduced aphid numbers, but those species feeding on high-quality plants survived longer than those on poor-quality plants, which existed only for a short period of time, especially when associated with ants. Losses due to migration of winged morphs and mortality caused by parasitoids were insignificant. 4. Varying the frequency of different patch types in a model indicates that different degrees of associations with ants are favoured in different environments. If the proportion of high-quality patches in a habitat is large, obligate myrmecophiles do best. On increasing the number of poor-quality patches, unattended species become more abundant. 5. The results suggest that, in spite of large species specific differences in growth rates, degree of myrmecophily or life cycle features, the temporal and spatial variability in top-down and bottom-up forces differentially affects aphid species and allows the simultaneous exploitation of a shared host-plant species. [source] Waterlogging and canopy interact to control species recruitment in floodplainsFUNCTIONAL ECOLOGY, Issue 4 2010Wiktor Kotowski Summary 1.,The extent to which seedling recruitment contributes to local functional diversity depends on the environmental filters operating in a plant community. Classical community assembly models assume that habitat constraints and competition act like hierarchical filters with habitat filtering as the dominant one. Alternative models assume a synergic interaction since responses to environmental stress and competition may impose physiological trade-offs in plants. 2.,River floodplains are an ideal system to test the relationship between habitat and competition filtering in community (re)assembly, as flooding causes changes in both habitat stress (waterlogging, resulting in anoxia and toxicity) and competition (dieback of vegetation) on one hand and acts as an effective seed dispersal vector on the other hand. 3.,We conducted a mesocosm experiment on early community assembly from a pool of 34 floodplain species covering a wetness gradient. Seed mixtures were sown in a full factorial design with water level, canopy and mowing as controlling factors. We measured the biomass of all species after one growing season and determined germination and seedling growth traits, both outside (response to waterlogging/no waterlogging) and in a growth-chamber (response to light/darkness). 4.,Species recruitment was analysed in relation to the controlling factors and measured functional traits using co-inertia analysis. Furthermore we analysed the effects of the controlling factors on several aspects of functional diversity. 5.,There was no establishment in grass sward, unless mowing was applied. Species-rich communities only developed when germination and early establishment phases occurred on waterlogged bare soil. High water level did not suppress establishment but reduced the total biomass and lowered inter-specific competition. The effect of mowing on species richness depended upon the interplay between waterlogging and canopy. 6.,Establishment success under canopy required seedling strategies to tolerate shade. The elimination of typical wetland specialists from oxic mesocosms was clearly an effect of their poorer and/or slower germination and lower competitive abilities in comparison to non-wetland plants, leading to their disappearance in this low-stress environment. 7.,Our results indicate that single stress factors can enhance species richness and functional diversity through limiting competition but a synergic interaction of different stresses can lead to reduced richness. [source] Stress synergy between drought and a common environmental contaminant: studies with the collembolan Folsomia candidaGLOBAL CHANGE BIOLOGY, Issue 4 2001Rikke Hřjer Summary The term global change is used predominantly in connection with the global temperature increase and associated changes in weather patterns over the next century. In a broader sense it also covers other anthropogenic impacts on the environment such as habitat fragmentation and pollution. The individual effects of each of these stress types have been extensively studied in the biota. However, organisms will frequently encounter these stress types in combination rather than alone and there is little information available on the effects of stress combinations. Here an examination is made of the interaction between realistic levels of summer drought and a common contaminant of agricultural soil (4-nonylphenol, NP), on a widespread soil invertebrate, the collembolan Folsomia candida. These stress factors were tested individually and in combination using a full factorial design. This approach revealed the existence of highly significant Bliss type synergistic interaction between the two stress types. Thus, exposure to NP significantly reduced the drought tolerance of this organism and, reciprocally, the toxicity of NP (LC50) during realistic summer drought was more than doubled in comparison to the value obtained under optimal soil moisture conditions. Furthermore, it is shown that NP has a detrimental effect on the physiological mechanisms underlying this animal's drought tolerance, thus providing some explanation for the mechanisms involved in the synergy. It is argued that this type of synergy is unlikely to be confined to this particular combination of stresses and thus there is a need to study the interactions between dominant natural stresses and pollution. The most important implication of these results is that some of the effects of global climate changes can be predicted to be most severe in polluted areas. [source] A study of antifungal antibiotic production by Thermomonospora sp MTCC 3340 using full factorial designJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 6 2003Monali Gupte Abstract The three independent variables, viz concentration of carbon source (glucose), concentration of nitrogen source (soybean meal) and temperature of incubation were found to be the most important for production of antifungal antibiotic by the isolate Thermomonospora sp MTCC 3340 from one-factor-at-a-time study. These variables were varied at three levels in a total number of 27 experiments designed using full factorial design. The results on analysis using the statistical software SPSS (version 6.0) indicated that the optimum combination of the three factors for the maximum yield of the antibiotic was concentration of carbon source (glucose) 2%, concentration of nitrogen source (soybean meal) 1% and temperature of incubation 30 °C. A close fit between experimental and predicted values of the antifungal yield was obtained using one of the modes derived from the statistical analysis, indicating that this model was applicable to this production. Copyright © 2003 Society of Chemical Industry [source] Effects of sex, status, and mating cues on expected aggressive responsesAGGRESSIVE BEHAVIOR, Issue 3 2009Heather K. Terrell Abstract The effect of sex, status, and mating cues on expected aggression was examined via three scenario-based studies in which participants imagined themselves in a situation with a same-sex instigator of a provocation. Participants were randomly assigned to receive a scenario, which included one of two levels of status of instigator (high, low), one of two levels of attractiveness of the instigator (unattractive, attractive), and one of two levels of provocation (apology, insult). Sex and dispositional aggressivity were also included in a full factorial design. Based on evolutionary psychology ideas, we anticipated that status and attractiveness would differentially influence expected aggression for men vs. women. Participants in Experiment 1 were instructed to imagine that they were alone, whereas participants in Experiments 2 and 3 imagined themselves in a situation that included mating-related primes. In general expected aggression was greater for aggression-prone participants and under conditions of provocation and/or a high-status instigator. Experiments 2 and 3 found that, in the context of mate competition, sex differences in the effects of instigator provocation, status, and attractiveness emerged: greater aggressivity now only predicted more aggression for males but not females who were insulted; aggression was highest for females confronting an unattractive, high-status instigator and for males confronting an attractive, high-status instigator; females were more likely to aggress against a high-status instigator, regardless of being in a steady relationship or a first date situation, but males were only more likely to aggress against a high-status instigator in a first date situation. Aggr. Behav. 35:259,273, 2009. © 2009 Wiley-Liss, Inc. [source] APPLICATION OF EXPERIMENTAL DESIGN METHOD TO THE OIL EXTRACTION FROM OLIVE CAKEJOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 2 2009SMAIL MEZIANE ABSTRACT Olive cake is an important solid waste of the olive oil production. It still contains a certain quantity of oil that can be recovered by means of solvent extraction. In this study, two-level full factorial design was performed to evaluate the effects of four variables and their interactions on the oil extraction by the ethanol 96.0% in a batch reactor. The variables included size of particles, temperature, and time of contact and solvent-to-solids ratio. The statistical analysis of the experimental data showed that the extracted oil mass depends on all the examined variables. It also depends on the interactions between size of particles and solvent-to-solid ratio and size of particles and temperature. The experimental data were in good agreement with those predicted by the model. PRACTICAL APPLICATIONS Olive cake is solid waste of the olive oil industry that is available in large amounts in many Mediterranean countries and at very low cost. It can be treated or valorized, enabling at the same time the solution to environmental problems caused by the olive oil production process. The economic interest that it presents is especially because of the residual oil that it contains and that can be recovered by solvent extraction. However, this solid,liquid extraction depends on several parameters: the ones inherent to the products (structure and properties of the sample, nature of extraction solvent); and the others to the extraction process (time of contact, temperature of extraction, solvent-to-solid ratio, stirring velocity). The experimental design method enables to determine the most important variables and their interaction in the extraction process at the same time performing a low number of experiments. [source] Supercritical carbon dioxide extraction of sea buckthorn (Hippophae rhamnoides L.) pomaceJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 13 2007Dániel Cossuta Abstract BACKGROUND: The goal of this work was to utilize the sea buckthorn pomace, which is the by-product of a sea buckthorn juice process. Pilot plant supercritical fluid extraction (SFE) experiments were performed in a 5 × 10,3 m3 volume high-pressure vessel. The effects of pressure and temperature on extraction yield and recoveries of biologically active components were studied using a 32 full factorial design. The pressure and temperature were varied over the ranges of 30,46 MPa and 313,353 K, respectively. The extract samples were analysed by TLC-densitometry, UV/VIS spectrofotometry and HPLC methods. RESULTS: The obtained yields changed between 142,164 g kg,1, according to the solvent power of the supercritical fluid. The recoveries of the different minor components were (g minor components kg,1 dried raw material): 2.50,4.25 sitosterol, 0.20,1.60 ursolic acid, 0.04,0.18 carotenoid, 0.35,0.42 total tocopherol. CONCLUSION: By evaluation the designed experiments 46 MPa and 333 K were chosen as the optimum conditions. Copyright © 2007 Society of Chemical Industry [source] Linking above-ground and below-ground effects in autotrophic microcosms: effects of shading and defoliation on plant and soil propertiesOIKOS, Issue 3 2000Juha Mikola Although factors affecting plant growth and plant carbon/nutrient balance , e.g., light availability and defoliation by herbivores , may also propagate changes in below-ground food webs, few studies have aimed at linking the above-ground and below-ground effects. We established a 29-week laboratory experiment (,one growing season) using autotrophic microcosms to study the effects of light and defoliation on plant growth, plant carbon/nutrient balance, soil inorganic N content, and microbial activity and biomass in soil. Each microcosm contained three substrate layers , mineral soil, humus and plant litter , and one Nothofagus solandri var. cliffortioides seedling. The experiment constituted of the presence or absence of two treatments in a full factorial design: shading (50% decrease in light) and artificial defoliation (approximately 50% decrease in leaf area in the beginning of the growing season). At the end of the experiment a range of above-ground and below-ground properties were measured. The shading treatment reduced root and shoot mass, root/shoot ratio and leaf production of the seedlings, while the defoliation treatment significantly decreased leaf mass only. Leaf C and N content were not affected by either treatment. Shading increased NO 3,N concentration and decreased microbial biomass in humus, while defoliation did not significantly affect inorganic N or microbes in humus. The results show that plant responses to above-ground treatments have effects which propagate below ground, and that rather straightforward mechanisms may link above-ground and below-ground effects. The shading treatment, which reduced overall seedling growth and thus below-ground N use and C allocation, also led to changes in humus N content and microbial biomass, whereas defoliation, which did not affect overall growth, did not influence these below-ground properties. The study also shows the carbon/nutrient balance of N. solandri var. cliffortioides seedlings to be highly invariant to both shading and defoliation. [source] A comparison of ammonium, nitrate and proton net fluxes along seedling roots of Douglas-fir and lodgepole pine grown and measured with different inorganic nitrogen sourcesPLANT CELL & ENVIRONMENT, Issue 3 2008B. J. HAWKINS ABSTRACT Significant spatial variability in NH4+, NO3, and H+ net fluxes was measured in roots of young seedlings of Douglas-fir (Pseudotsuga menziesii) and lodgepole pine (Pinus contorta) with ion-selective microelectrodes. Seedlings were grown with NH4+, NO3,, NH4NO3 or no nitrogen (N), and were measured in solutions containing one or both N ions, or no N in a full factorial design. Net NO3, and NH4+ uptake and H+ efflux were greater in Douglas-fir than lodgepole pine and in roots not exposed to N in pretreatment. In general, the rates of net NH4+ uptake were the same in the presence or absence of NO3,, and vice versa. The highest NO3, influx occurred 0,30 mm from the root apex in Douglas-fir and 0,10 mm from the apex in lodgepole pine. Net NH4+ flux was zero or negative (efflux) at Douglas-fir root tips, and the highest NH4+ influx occurred 5,20 mm from the root tip. Lodgepole pine had some NH4+ influx at the root tips, and the maximum net uptake 5 mm from the root tip. Net H+ efflux was greatest in the first 10 mm of roots of both species. This study demonstrates that nutrient uptake by conifer roots can vary significantly across different regions of the root, and indicates that ion flux profiles along the roots may be influenced by rates of root growth and maturation. [source] Effect of inhibition treatment, type of inocula, and incubation temperature on batch H2 production from organic solid wasteBIOTECHNOLOGY & BIOENGINEERING, Issue 3 2006Idania Valdez-Vazquez Abstract Two types of induction treatments (heat-shock pretreatment, HSP, and acetylene, Ac), inocula (meso and thermophilic) and incubation temperatures (37 and 55°C) were tested according to a full factorial design 23 with the aim of assessing their effects on cumulative H2 production (PH, mmol H2/mini-reactor), initial H2 production rate (Ri,H, µmol H2/(g VSi,×,h)), lag time (Tlag, h), and metabolites distribution when fermenting organic solid waste with an undefined anerobic consortia in batch mini-reactors. Type of inocula did not have a significant effect on PH, Tlag, and Ri,H except for organic acids production: mini-reactors seeded with thermophilic inocula had the highest organic acid production. Concerning the induction treatment, it was found that on the average Ac only affected in a positive way the PH and Tlag. Thus, PH in Ac-inhibited units (6.97) was 20% larger than those in HSP-inhibited units (5.77). Also, Ac favored a shorter Tlag for PH in comparison with HSP (180 vs. 366). Additionally, a positive correlation was found between H2 and organic acid production. In contrast, solvent concentration in heat-shocked mini-reactors were slightly higher than in reactors spiked with Ac. Regarding the incubation temperature, on the average mesophilic temperature affected in a positive and very significant way PH (10.07 vs. 2.67) and Ri,H (2.43 vs. 0.76) with minimum Tlag (87 vs. 459). The positive correlation between H2 and organic acids production was found again. Yet, incubation temperature did not seem to affect solvent production. A strong interaction was observed between induction treatment and incubation temperature. Thus, Ac-inhibited units showed higher values of PH and Ri,H than that HSP-inhibited units only under thermophilic incubation. Contrary to this, HSP-inhibited units showed the highest values of PH and Ri,H only under mesophilic conditions. Therefore, the superiority of an induction treatment seems to strongly depend on the incubation temperature. © 2006 Wiley Periodicals, Inc. [source] Strategies for developing design spaces for viral clearance by anion exchange chromatography during monoclonal antibody productionBIOTECHNOLOGY PROGRESS, Issue 3 2010Daniel M. Strauss Abstract The quality-by-design (QbD) regulatory initiative promotes the development of process design spaces describing the multidimensional effects and interactions of process variables on critical quality attributes of therapeutic products. However, because of the complex nature of production processes, strategies must be devised to provide for design space development with reasonable allocation of resources while maintaining highly dependable results. Here, we discuss strategies for the determination of design spaces for viral clearance by anion exchange chromatography (AEX) during purification of monoclonal antibodies. We developed a risk assessment for AEX using a formalized method and applying previous knowledge of the effects of certain variables and the mechanism of action for virus removal by this process. We then use design-of-experiments (DOE) concepts to perform a highly fractionated factorial experiment and show that varying many process parameters simultaneously over wide ranges does not affect the ability of the AEX process to remove endogenous retrovirus-like particles from CHO-cell derived feedstocks. Finally, we performed a full factorial design and observed that a high degree of viral clearance was obtained for three different model viruses when the most significant process parameters were varied over ranges relevant to typical manufacturing processes. These experiments indicate the robust nature of viral clearance by the AEX process as well as the design space where removal of viral impurities and contaminants can be assured. In addition, the concepts and methodology presented here provides a general approach for the development of design spaces to assure that quality of biotherapeutic products is maintained. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] Improvement of ganoderic acid and Ganoderma polysaccharide biosynthesis by Ganoderma lucidum fermentation under the inducement of Cu2+BIOTECHNOLOGY PROGRESS, Issue 2 2010Ya-Jie Tang Abstract The cell growth and total accumulation of bioactive metabolites were significantly improved by Cu2+ addition during the submerged fermentation of medicinal mushroom Ganoderma lucidum. A mathematical model, constructed by response surface methodology combination with full factorial design, was applied to study the synergic effect of Cu2+ addition concentration and addition time. The optimal Cu2+ inducement strategy for the cell growth were different from those for the biosynthesis of ganoderic acid (GA) and Ganoderma polysaccharide. A multiple additions strategy of Cu2+ by adding each 1 mM Cu2+ on day 2, 6, 8 and 2 mM Cu2+ on day 4 was developed to enhance total accumulation of GA and extracellular polysaccharides. The highest GA content reached 3.0 ± 0.1 mg per 100 mg DW, which was increased by 76.5% and 33.9% compared with the control without Cu2+ addition and the peak value predicted by the constructed mathematical model, respectively. While, relatively higher addition concentration of Cu2+ (i.e., 5 mM) on the culture of day 4 led to higher content and total production of intracellular polysaccharides. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] Optimization of medium composition for the production of antimicrobial activity by Bacillus subtilis B38BIOTECHNOLOGY PROGRESS, Issue 5 2009Olfa Tabbene Abstract An antimicrobial activity produced by Bacillus subtilis B38 was found to be effective against several bacteria, including pathogenic and spoilage microorganisms such as, Listeria monocytogenes, Salmonella enteridis, and clinical isolates of methicillin-resistant Staphylococcus species. Nutrients such as carbon, nitrogen sources, and inorganic salts enhanced the production level of the antibacterial activity by B. subtilis B38. A first screening step showed that lactose, ammonium succinate, and manganese most influenced both cell growth and antibacterial activity production. These three factors varied at two levels in eight experiments using full factorial design. Results indicated that maximum cell growth (OD = 10.2) and maximum production of antibacterial activity (360 AU/mL) were obtained in a modified medium containing 1.5% (w/v) lactose, 0.15% (w/v) ammonium succinate, and 0.3 mg/L manganese. Depending on the indicator strain used, the antibacterial activity was 2- to 4-fold higher in the modified culture medium than in TSB medium under the same conditions. Thin layer chromatography-bioautography assay showed the presence of three active spots with Rf values of 0.47, 0.7, and 0.82 in TSB medium. However, the inhibition zone of two spots (Rf values of 0.7 and 0.82) was slightly larger in the modified medium. Moreover, a large zone of inhibition with an Rf value of 0.3, was observed in this modified medium, instead of the spot having an Rf value of 0.47. These results suggest that the nutrients act as environmental factors, quantitatively and qualitatively affecting the production of antibacterial compounds by B. subtilis B38. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] Effects of Sulfuric Acid Loading and Residence Time on the Composition of Sugarcane Bagasse Hydrolysate and Its Use as a Source of Xylose for Xylitol BioproductionBIOTECHNOLOGY PROGRESS, Issue 5 2005Silvio S. Silva A 22 full factorial design was employed to evaluate the effects of sulfuric acid loading and residence time on the composition of sugarcane bagasse hydrolysate obtained in a 250-L reactor. The acid loading and the residence time were varied from 70 to 130 mg acid per gram of dry bagasse and from 10 to 30 min, respectively, while the temperature (121 °C) and the bagasse loading (10%) were kept constant. Both the sulfuric acid loading and the residence time influenced the concentrations of xylose and inhibitors in the hydrolysate. The highest xylose concentration (22.71 g/L) was achieved when using an acid loading of 130 mg/g and a residence time of 30 min. These conditions also led to increased concentrations of inhibiting byproducts in the hydrolysate. All of the hydrolysates were vacuum-concentrated to increase the xylose concentration, detoxified by pH alteration and adsorption into activated charcoal, and used for xylitol bioproduction in a stirred tank reactor. Neither the least (70 mg/g, 10 min) nor the most severe (130 mg/g, 30 min) hydrolysis conditions led to the best xylitol production (37.5 g/L), productivity (0.85 g/L h), and yield (0.78 g/g). [source] Preparation and characterization of polyalginate,glutaraldehyde membranes,Swelling analysis by microcalorimetry and adsorption kinetics of cationic dyeJOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2010Eunice F. S. Vieira Abstract Thin crosslinked polyalginate,glutaraldehyde membranes were prepared and characterized by Fourier-transformed infrared spectroscopy, thermal analysis (TG/DTG), and X-ray diffractometry. Microcalorimetric analyses have pointed out that water swellings of the membranes are slightly exothermic, and the swelling energies decrease with increasing temperature. The membranes were tested for the adsorption of methylene blue (MB) dye from aqueous solutions. The adsorption capacity of the membranes increased with increasing initial MB concentration and decreased with increasing temperature. It was observed that the MB adsorption kinetic data were best fitted by the Avrami model. Intraparticle diffusion of MB into the interior of the membranes was detected after 60 min of contact time. The MB adsorption on the membranes was also evaluated by three new 22 full factorial designs (36 experiments). It was found that binary interactions between initial dye concentration and temperature are statistically important for MB adsorption on the membranes. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] Use of software to facilitate pharmaceutical formulation,experiences from a tablet formulationJOURNAL OF CHEMOMETRICS, Issue 3-4 2004Nils-Olof Lindberg Abstract This paper exemplifies the benefits of using experimental design together with software to facilitate the formulation of a tablet for specific purposes, from screening to robustness testing. By applying a multivariate design for the screening experiments, many excipients were evaluated in comparatively few experiments. The formulation work was generally based on designed experiments. Most of the experiments were fractional or full factorial designs, generated and evaluated in Modde with the centre point replicated. The robustness of the formulation was evaluated with experimental designs on two different occasions. Tested flavours were found to have limited influence on the important responses, which was key information in order to proceed with that particular composition. The formulation was also robust towards normal batch-to-batch variation of the excipients and the active pharmaceutical ingredient. A process step was investigated and, by applying experimental design and keeping in mind previous findings, important information could be gained from the study. The different studies yielded good and very useful models. Established relationships between design factors and responses provided information that was vital for the project. In cases of poor models, essential information regarding robustness was obtained. Copyright © 2004 John Wiley & Sons, Ltd. [source] |